TRSDOS &
DISK BASIC

Radio fhaek
Reference
TRS-80
Manual MICRO

COMVIPUTER|)
SYSTEM

Contents
General Information
Mini Disk Operation
TRSDOS Overview
TRSDOS Commands
‘Extended Utilities .
TRSDOS Technical Information
DISK BASIC
Appendices

Index

ONOORWN =

QUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK g A DIVISION OF TANDY CORPORATION

TRSDOS &
DISK BASIC
Reference
Manual

For the Radio Shack TRS-80
Disk Operating System
TRSDOS Version 2.1

DISK BASIC Version 1.1

Radlo Jhaek

A DIVISION OF TANDY CORPORATION

One Tandy Center
Fort Worth, Texas 76102

First Edition — 1979

All rights reserved. Reproduction or use, without express
permission, of editorial or pictorial content, in any man-
ner, is prohibited. No patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in the preparation
of this book, the publisher assumes no responsibility for
errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information con-
tained herein.

© Copyright 1979, Radio Shack

A Division of Tandy Corporation,
Fort Worth, Texas 76102, U.S.A.

Software Copyright Notice

All TRSDOS and DISK BASIC software is copyrighted by
Radio Shack. Radio Shack grants each TRSDOS user the
privilege of making BACKUP diskettes of TRSDOS and

DISK BASIC, provided such diskettes are solely for per-
sonal use.

Any other duplication of TRSDOS or DISK BASIC soft-
ware, in whole or in part, in print or in any other storage-
and-retrieval system, is forbidden.

Printed in the United States of America

To Our Customers

This is a reference manual, and its organization reflects the relationship between
TRSDOS and DISK BASIC. TRSDOS is the fundamental software, so it's described
first. DISK BASIC is a language supported by TRSDOS, so it’s described after
TRSDOS. (If other languages are supported later, they’ll plug right in to this manual
along with DISK BASIC.)

But don’t think you have to read the manual in strict sequence. If you're an old hand at
LEVEL Il BASIC and you want to start out with DISK BASIC, go ahead and skip to
Section 7. You can refer back to the TRSDOS sections later on when you're ready or
when you need them.

We hope you enjoy exploring this powerful new computer system!

How to Use This Book

Read
Sections |42

Read and use
Sections 3-8

YES

SKim

Sections 3¢ 4

Read and use
Section 7

General
Information

Contents of This Section

Introduction 2
Notation Conventions
VersionsandReleases

Section 1 - Page 1

General Information

Introduction

This book is a combined operation and reference manual for the
TRS-80 Disk Operating System. It will tell you how to operate the
hardware and how to use the software.

For many of you, there will be more than enough information. (‘‘All
I want to do is use the Computer, not understand it!”’) Don’t worry,
this book is designed so that you can start programming in DISK
BASIC (if that’s what you want to do) right away. All you have to do
is read the chapter on Mini Disk Operation . . . skim through TRSDOS
Overview and TRSDOS Commands . . . and on to DISK BASIC.

But DISK BASIC is just one aspect of TRSDOS. It’s not a

part of TRSDOS, but a program that TRSDOS executes. Using

DISK BASIC without any awareness of the capabilities of TRSDOS

is rather like riding in a Pullman car without any knowledge of the
engine, freight cars, diner and other parts of a train. It’s true that
TRSDOS will do all that’s necessary to let you ride comfortably along
in BASIC; but eventually you’re going to want to have a say in where
the train goes, what its schedule is, and what goes in all those freight
cars. That’s when you need to understand TRSDOS.

The illustration below shows the relationship between the Computer,
Expansion Interface and Mini Disk Drives.

The first drive(Drive 0) always contains the TRSDOS
diskette, which is pre-recorded with the Operating System
software: an executive program, and several auxiliary
0 programs, including DISK BASIC. The executive program
is loaded into the first 4K bytes of RAM, and stays there

while TRSDOS is in control. The auxiliary programs
m are loaded as needed.
° =— =
——
' \\§\
L T L AL —
o [I
Second, third and fourth drives can contain data \\\\\x\\\\\\
: R RS
diskettes, for storing your programs and data. —————
The Expansion Interface contains the real- (of
time clock, disk controller IC, and optional
extra RAM (addresses above 32767). —= == -
The Keyboard/Computer contains a built-in (ROM) J

program which takes over at power-up, and loads

the TRSDOS executive program from the system
diskette (in Drive 0). If the Mini Disk equipment is
not connected, this ROM program can transfer control
to LEVEL II BASIC.

1-2

General Information

One section of this book you should definitely become familiar with
is the Glossary. We’ve tried to give definitions for all the “computer
words” and everyday words with special meanings in this book. Even
if you’ve heard all the terms, you’ll gain some useful information
from the Glossary, because it’s customized for the TRS-80.

First you make a BACKUP . ..

You received one TRSDOS diskette with your Mini Disk drive 26-1160.
This diskette contains the operating system software. Without this
disk, you haven’t got a disk operating system.

So, your first disk operation . . . before you remove the write protect
tape from the TRSDOS diskette . . . should be to duplicate TRSDOS
onto a blank diskette. You’ll find abbreviated instructions for making
a duplicate (BACKUP) of your TRSDOS diskette at the end of the
Mini Disk Operation chapter.

Notation Conventions

In descriptions of syntax for commands, statements and dialog with
the Computer, we’ll use the following conventions for clarity and
brevity.

[This special symbol represents a mandatory
blank space. Unless it is specified, any
blanks that appear in the syntax are optional.
Example:
DIRB:1
The blank space is required after the R.

ENTER “Press the N33y key.”

< SPACE> “Press the space-bar.”
CAPITALS and Indicate material which must be entered
punctuation exactly as it appears. The only punctuation

symbols not entered are the special cases
(brackets and triple-period . . .) explained
below.

Example:

LOADfilespec”

Only the command LOAD and the quote
marks are entered verbatim; you supply
the filespec.

1-3

General Information
S O T P S AR P A T

Notation, continued

lowercase italics

[]

var([,...])

1-4

» Represent input you supply, upon prompt-

ing from the Computer. This convention
will only be used where necessary to
distinguish between Computer prompting
and user input.

Example:

HOM MANY FILES

The Computer asks the question, and you
answer it.

Represent words, letters or values you
supply from a set of acceptable values for
that situation.

Example:

var = exp

A variable name goes on the left, and an
expression goes on the right.

Brackets enclose optional material.
Example:

CLOSE[filenum]

filenum (the file number) is optional after

CLOSE. The brackets are not actually
typed in.

The triple-period symbol inside brackets
indicates that preceding items in the
brackets may be repeated.

Example:

INPUT[“prompting message’ ;]var[,var . ..]
The INPUT variable-list may include

more than one variable. The periods are
not actually typed in.

Signifies an array. If no commas are
placed inside the parentheses, a
one-dimensional array is intended;

1 comma indicates a two-dimensional
string array; etc.

Examples:

AS$(,) indicates a two-dimensional
string array.

B1() indicates a single-dimensioned
array.

General Information

Notation, continued

exp
var

nmexp

nmmvar

exp$

var$
con
nmcon

con$

numerical
suffixes

String or numerical expression
String or numerical variable name

Numerical expression, including constants,
variables, functions

Numerical variable name

String expression, including constants in
quotes, variables, functions and operators

String variable name
Constant, either string or numerical
Numerical constant

String constant

Attached to distinguish between different
arguments and parameters of the same type.

Example:
COPYlfilespecl YTOWBfilespec?2

General Information

Versions and Releases

Some of you may be a little confused about the terminology,
“Version X.Y”. The “X” and “Y” will change as TRSDOS is
updated, so here’s an explanation.

A new version represents a substantial expansion of the previous
version. For example, new utilities, high-level languages, etc., might
be included in a new version. Such versions are numbered by the
integers 1, 2, 3,

A new release, on the other hand, is simply an update of the previous
release of a given version. This later release generally includes wider
implementations and enhancements of commands and fixes for any
problems in the earlier release. The releases are numbered by
decimal fractions, .1, .2,.3,. ...

Therefore, when we refer to Version 2.1, that’s short for the first
Release of Version 2.

Note: In its original printing, this Manual describes TRSDOS

Version 2.1, and DISK BASIC Version 1.1. The Manual will be
updated as required by later versions and releases.

1-6

Mini Disk
Operation

mI>SOVP>I

Contents of This Section

Introduction
Connection
Operation
CareofDiskettes
Specifications10
Schematics
Makinga TRSDOSBACKUP16

o0 wWwmN

Section 2 - Page 1
.- . - - . - -
T

Mini Disk Operation

Introduction

The TRS-80 Mini Disk drive is a mass storage device custom
manufactured for use with the TRS-80 Microcomputer. It combines
the compactness of a cassette recorder with the high-speed, reliable
data access of the larger disk drive units. Information is magnetically
recorded on and read from flexible (“floppy”’) diskettes.

In simplified terms, the Mini Disk consists of a magnetic read/write
head, similar to that on a tape recorder; a stepper motor to move the
head across the diskette surface; a drive motor and hub assembly to
rotate the diskette; and the necessary logic circuitry to control

the read/write process and the motor speed. See Figures 1 and 2.

There are two types of drives,
distinguished by their Radio
Shack Catalog Numbers,
26-1160 and 26-1161. Your
disk system must include one
(and only one) 26-1160 and
may include up to three
26-1161 drives.

Included with 26-1160

Drive unit: Incorporates
special terminating resistors
not present in the 26-1161
units.

Interconnect cable: For con-
nection of 26-1160 and up to .
three optional 26-1161 drives Figure 1. Mini Disk Drive.
to the Expansion Interface. MAGNETIC READWRITE HEAD

1 TRSDOS diskette: Contains
the operating system software,
utilities, DISK BASIC, etc.

WRITE PROTECT SWITCH

DISK CONTROLLER INDEX SECTOR LED

Included with each 26-1161

S
~ / STEPPER MOTOR
~,

INDEX/SECTOR
DETECTOR

Drive unit: Does not incorpo-
rate terminating resistors.

\4® MAGNETIC
V READMWRITE HEAD

Blank diskette: Can be
formatted or backed up for
use with TRSDOS.

SPINDLE HUB ASSEMBLY

Figure 2. Functional components in a Mini Disk drive.

2-2

Mini Disk Operation

Connections

The power to all components in the TRS-80 system should be “‘off”
while you make connections.

Look at the ribbon-type connector cable included with your 26-1160
Mini Disk drive. Notice that the cable has four edge card connectors
through its length, and a single connector at the other end. Connect
the single plug to the edge-card jack on the left rear of the

Expansion Interface, as shown in Figure 3. Be sure the plug is
oriented so the cable exits from the bottom.

Before connecting the Drive(s) to the cable, note the following rules:

1) 26-1160 must always be the “terminal” or final drive on the
cable; that is, of all your drives, it must always be the farthest
away from the Expansion Interface. This is because it includes
the terminating resistors mentioned above.

2) The connector closest to the Expansion Interface must always

be plugged in to a drive. The other connectors can be
“empty”.

LEFT REAR OF EXPANSION INTERFACE
(MINI-DISK CONNECTION)

/ SINGLE PLUG

ON®

EDGE CARD PLUGS

N~

T

S
N
NG

CABLE MUST EXIT AT BOTTOM
FOR PROPER CONNECTION.

NS
N—
g

NG
N
N

A

N—F
7
N—/
N

\\

) —

/

yA

/] b
RIBBON TYPE CONNECTOR CABLE

Figure 3. Connecting the ribbon cable to the Expansion Interface.

4

f

2-3

Mini Disk Operation

Connect each Mini Disk ‘__\T
unit to the cable, taking e

care to orient the plug N e

properly as shown in

Figure 4. Inside each - TO EXPANSION INTERFACE
plug is a small plastic
connector. If the plug
doesn’t mate properly,
check to see that the
plug is oriented so the

EDGE CARD
CONNECTOR

pin lines up with the =
slot. -
= 1 ®
A
LN
r <)|
GUIDE PIN L——.——] _...._]
Figure 4. Connecting the cable to the Mini Disk.

Examples:

If you have just one drive (must be 26-1160), then connect it to the
first connector plug, so as not to leave any empty connectors between

the Drive and the Expansion Interface. Leave the last three connectors
empty.

If you have two drives, then connect 26-1161 to the first connector
and 26-1160 to the second connector. Leave the last two connectors
empty.

Figure 5 shows a Mini Disk system with four drives connected.

Connect each Mini Disk to a source of 120 VAC, using the power cord
provided.

26-1160

Figure 5. A complete four-drive Mini Disk System.
|

2-4

Mini Disk Operation

Drive Numbering

TRSDOS requires at least one Mini Disk drive, and can handle up to
four. Under TRSDOS, these drives are referred to as drives 0,1,2 and 3
(where drive O is closest to the Expansion Interface, and drive 3 is
farthest away). See Figure 5. These designations cannot be changed —
they are built into the ribbon cable connector.

When the Computer attempts a bootstrap operation (power-on or
reset), it will automatically attempt to load TRSDOS from drive O.
Therefore a TRSDOS diskette must be in drive O when you power on
or reset the Computer. In fact, the TRSDOS diskette should always
remain in drive O while TRSDOS is in use, except in special cases.

Operation

Before powering on the disk system, you need to understand a few
things about how the drives work.

The disk drive does not rotate continuously while it is “on”. It only
rotates when a Motor-On signal is sent from the Computer. If more
than one Mini Disks are connected, the Motor-On signal will turn them
all on and off simultaneously, even if only one of them is to be
accessed by the Computer. This signal is sent about a second before
the Computer accesses the disk, to allow the drives to reach operating
speed.

While the Computer is accessing one of the Mini Disks, the red light
(LED) on the front of that Mini Disk will remain lit.

Caution: Do not open a drive latch to insert or remove a diskette
while the drive motors are running (i.e., while one of the LEDS
is lit).

How a Diskette Works

A diskette is simply a circular plastic sheet, one side of which is
coated with a highly polished layer of ferromagnetic material. Similar
to a 45 RPM record, the diskette has a large spindle hole to
accommodate the drive hub, and a small hole which indexes the
diskette as it rotates.

2-5

Mini Disk Operation

L e T

A blank diskette (either brand-new or magnetically erased) contains
no information. TRSDOS has a special utility program (called
FORMAT) which takes a blank diskette and organizes it into
concentric “tracks’ and subtracks called “‘sectors”. See Figure 6.
These divisions are like the numbered pages in a book. (FORMAT
also places a small amount of system and bookkeeping information
onto each diskette. For more information, see Extended Utilities,
FORMAT.)

TRACK 1,SECTOR 8
DATA 256 BYTES SECTOR NUMBERS

TRACK/SECTOR ID FOR
TRACK 1, SECTOR 8

S —
DIRECTION OF ROTATION

Figure 6. Track/sector organization on a formatted diskette.

Each diskette is permanently sealed inside its jacket to prevent
bending, creasing, scratching or contamination of the diskette
surface. When the diskette is loaded into the drive, a hub assembly
grips the diskette; when the drive motor is on, the diskette

rotates inside its jacket. The specially treated jacket lining cleans
the diskette as it rotates.

Notice that the TRSDOS diskette comes with a piece of tape across
the top (above the label). This tape covers the diskette’s write
protect notch. With the notch covered, the diskette is physically
protected from being written to. (A “write operation” is any
alteration of the data stored on the diskette. In contrast, a “‘read”
does not alter the information — merely accesses it.)

2-6

Mini Disk Operation

Remove the tape from the diskette if you intend to write to it; and
place a tape over the notch on any diskette you don’t want to
accidentally write to.

See Figure 7.

LABEL \ WRITE PROTECT7 WRITE PROTECT TAB
I~ SECTOR HOLE °

JACKET —7

READ/WRITE NOTCH

Figure 7. A diskette; a write-protected diskette; a diskette in
protective storage envelope.

Inserting a Diskette

1. Be sure the Mini Disk drive is stopped when you insert or
remove a diskette.

9. Open the front of the Mini Disk drive. Gently insert the diskette
into the vertical slot, with the write protect notch up and the
diskette label to the right (Figure 8). Be sure not to close the
latch until the diskette is inserted all the way and seated
properly, or you may damage it.

3. Close the Mini Disk latch. This causes the spindle-hub assembly
to grip the diskette. If the door doesn’t close easily, don’t
force it. Re-insert the diskette and try again.

Figure 8. Inserting a diskette.

Mini Disk Operation

Power-Up Sequence

You should always power up the peripherals (disk drives, printer,
Expansion Interface, etc.) first, and the TRS-80 CPU/keyboard last.
Also note that turning the peripherals on and off while the Computer
is on may confuse the system and cause abnormal operation. Work
done on a currently open file may be lost.

The power switch for each Mini Disk is on the rear of the unit. Power
is “on” when the toggle switch is in the up position, and “off”” when
the switch is down.

1. Turn on the Expansion Interface.

Turn on the Mini Disk drives: first the terminal drive, 26-1160,
then the other drives, if any.

3. When you turn on the TRS-80 CPU/keyboard, the Computer
will instantly attempt to load TRSDOS from Drive 0. -So before
turning on the CPU, carefully insert the TRSDOS diskette into
drive O as explained above under “Inserting a Diskette”. You
may also want to insert formatted diskettes into the other drives
now; however, these may be inserted any time the drives are
stopped.

Another approach would be to plug all devices into an adequate
power strip and turn them all on with a single switch.

Care of Diskettes

Diskettes are precision recording media. Handle them very carefully
to get maximum life from each diskette. In general, follow the special
handling precautions used with both tape cassettes and high fidelity
records.

1. Keep the diskette in its storage envelope whenever it is not in
one of the drives. Don’t leave the diskettes in the drives
needlessly, for example, when the system is turned off.

2. Keep diskettes away from magnetic fields (transformers, AC
motors, magnets, etc.). Strong magnetic fields will destroy
information on the diskettes.

3. Handle the diskette by the jacket only — don’t touch any of the
exposed surfaces. Don’t try to wipe or clean the diskette surface;
you might scratch it and destroy data.

4. Keep the diskette away from heat and direct sunlight. See the
“Specifications” section below for storage temperature range.

2-8

Mini Disk Operation

5. Avoid contamination of the diskette with cigarette ashes, dust
or other particles.

6. Do not write directly on the diskette jacket with a hard-point
device such as a ball point pen or lead pencil, as this could
damage the recording surface. Use a felt tip pen only.

7. Before inserting a diskette into the Mini Disk drive, be sure the
motor is off (no LEDs lit and no motor sound).

8. Store diskettes in a vertical file folder or on a shelf where they
are protected from pressure to their sides (just as phono
records are stored).

If you have problems. ..

Frequent occurrences of disk I/O errors during disk accesses

may indicate a worn diskette or some problem with the Mini Disk
drive or other hardware. Try to isolate the problem by swapping
drives and diskettes as available.

If you have a repeated problem with a particular diskette, try copying
the accessible files onto another diskette. Then erase the faulty
diskette with a bulk eraser (Radio Shack Catalog Number 44-210)
and attempt to format it (see Extended Utilities, FORMAT).

During the format process, the diskette will be checked for flaws,
and any defective tracks will be locked out, leaving you with an
otherwise usable diskette.

If the Mini Disk drive seems to be at fault (errors during access to
several diskettes), bring it in to your local Radio Shack store for
servicing.

Mini Disk Operation

Specifications — Drives and Diskettes

Storage capacity (bytes available to user)

Formatted diskette
TRSDOS diskette

Diskette Organization
Tracks per diskette

Bytes per track

Sectors per track

Bytes per sector
Data transfer rate

Average access time
Drive motor start time

Required media

Diskette life*

Data storage life
on diskettes

Diskette storage temperature
Size
Drive unit

Diskettes (jacket size)

Power requirements

83,060
58,880

35

2560
10
256

12.5K bytes/second

750 mS
1 second

Radio Shack Flexible Diskettes,
Catalog Number 26-305, or

26-0405 (pkg of 3)

2.5 x 10° passes/track (110 hrs)
5 years estimated actual use

20 years

50-125 deg.F (12-52 deg.C)

6-3/8x 3-1/2x 13-1/4”
(16.2x 8.4x33.7cm) HWD
5-1/4x 5-1/4x 1/32”
(13.3x 13.3x0.08 cm) HWD

120 VAC, 60 Hz, 35 Watts (28 VA)

* Typically, diskette life will be limited by improper handling.
Follow handling recommendations listed above for maximum

diskette life.

2-10

Schematic Diagrams
Control Logic

B ALY

R/W |
XS40!
B/W CT. ééo
XS4 ! 1 300V
59
)
Y YL
+5V
g/ 2
XS A0\ RAZ
2K
+ PuLL UP 2
XSdo|
+5V ’ + PULL UP |
R4 ‘ xS401
20
+5V el —tisy
=4 =4 «
=3
fox
cio
9 200
; R28 Zelo Tshe TPG
FREAD ENABLE 300 Q
s 4ol 4B |
+isz\>/ 23h2 1z 2 20 e READ OATA
gﬂ & MOTE®: UMLESS OTHERWISE SPECIFIED,
o
oif L ALL CAPMCITORS ARE N MICRO-
A FARADS) 50\// +80, -20% -
+ WeiTE PRoT. G + WRITE PROT. 2. ALL DISDES ARE INAI4A&.
12 . ’a X340\ 2. ﬁg;gg%“?%}% ARE 10 MicRO-
= S ! ¥ — WRITE PROTECT 1ES, 10%e.
+OUTPUT ENABLE , ; - 4. ALL RESISTORS ARE 1N OHMS,
XS4\ e 4L clo . 4w, 5°f.
esz I : « . . 2.0 IUDICATES SHUNT SELECTABL &
1ON
[=] - &,
+sv—MO»E~<—3®4 ‘o = P f‘ *— -INDEX/SECTOR ©. XINDICATES 31 ,Sg- INDICATES 32,
<7 INDIcATES 33, -2~ aTE
: =S Sl B — AN NDEX/EECTOR LED ! S 9% - INDICATES &
a7 2B, 7] COMPONMENT NOT INSTALLED.
- INDEX /sECTOR s A ' >
VW 8 PIN 4 OF ID 1& GROUND.
RESISTOR ARRAY (3] =3 vaLuE MAY BE SOK.
VALWE| POSITIOM |UNUSED
. SB00| RPL » B
—Z — +iZV GBON| RPl
&
+12V 10,1y T-1=) SO0 RPD
5212 YY) : _
—SF A2 +12VA ‘e ePa REF DESIGNATION |REF DesiGNATION
-{:_cza lezo LAST "LSeD NOT USED
T ok, To. 3l T c20,23,24
2 CRID
+evETN — , DUUSED [B ay VB e T e Pos.Junvsed |G [ENR S -5
4,56, TYPe |PoS. 0 I EDIBDEIN = e RGO B) &2
GND 8,4 ' ¢ @T\'—"s N4co 3E 4] 1] — 1| 124528 | B3 2l 4]~ gg’é
"o L THRLRA . TPo 1402 38 1417 | — LMD 4 A —_ i =3 TP
G —— 74LS14 28 FRERER RIS EN NG
K —_ 4 <2 —
+5v RTN _@,5 _ 74077 20,40 14 |7 1486 4 1411
2t ICM:'S.L 1433 2D 147 =1 9e0z [a8 o] 8 | ~
=47 %ng = 1438 | 2f 14|17 | - |2zaTtzzez | 2A — =1~
4 +]10% ! 1474 |284D] D& | 14| 1 | — |zaTesos | < — =1 =
+8V —\ * +5v t4192 | =D le|8 | — |i1soL & 7 — | =1-
1415221 3C o |8 | ~ [meez126 | 4F - 1-1- 2-12

2-11

2-13

Read/Write Logic +5v +ev

i1y zTiot ot e l‘
~
é L L § e &% TPI®
3 3 3 2 . 3 "
TEElGH b . — EF- - MTR ou
P R/WI
2c ! =19
W10 AMA- 2 < 2ok - ¥s400
':)
Z;%%VK > =
2 ,
—~—MoToR oM AL e * MV 2
- 2 | 2 Sk crS
+P_I’J(LL e 2 . AN ‘\évzé : 12 N4 o *._;.év_ /W 2
S400 RP3
2 5 = 04 8
ze 09 V/BW 1% B XsS4o00
~WRITE DATA \’%22 \3:9\2 3 c & & i°fo Z2oK
2=) =
i
+12v 9
+8V s :._3@3 ay
| 6 R2Z
C < Z74 ERASE
V18w
§§ a 1°jo
Y A=)
el -
24 8 2 4 120"70
-WRITE GATE —x NG 2 = 4
+WRITE PROT. 2 o N R/W T
ADALOQ 2C RPZ \ l
~DRWVE SeiecT | —XSfi g U2 —=P>e— Ug—~z | i H a2 Pezz2 oo
) iz 45V LG/~ — ACTWVITY LeD
MY 3 é
(1 224 -
=4 S0 2c 2P5
- bRWE SELECT 2 22 oo e = ; 5%4 ey — _w\,_i______i_@z_ ACTIVITY LBD
b pd + 12V
1S 13 ®
== o0 o—2e, fﬁ\gos
n hnd I HM s = _
- DRI\WVE SELECT 3 x4 P i i 4 7] G}~ — HEAD LOAD
=2 ‘«Z\ 3p M2 == + READ =MNABLE
< XH400
TPz | ¢—ed—u ,
3g 5 + OU;P% oE—MAbLE—.
2E ? - =3
-STEP 22 e ; lo] 3€ p +2v
DIRECTION . ®
e "
)
R2G RZT ze —%- ¢p
16K av %14 v
ciz MN—TEY 1 WA S :
1.0 = W=
10 |14 10% 2]y Sl g, s
o |k |ies %l |7 2 2al0 10l ng] . ¢<
2 10 5 3|— 4-BT P2
& a & af—- R
4 PuLL uP | : a2t [24835 R2% 4 f’%eab =
*X5400 l e _L c cat 200 215 ap @ T
= % = M 750"\\, p- "_"—__%C © {
=LY, > | cRi1.,|INa0O2
% - b}
= CRIB cRIZ cRI o
+5V = l ——ie © 8
—j _ +av N4 > aF P A
' < @TP 1.2
3 X ReO “hcz9 Olix=! 2 240 o | cria
RPS 4 - L2 g) “@5 IN4OD 26y _TRACK ZERO
< - -
F A\ s D 4 2 &% 0d =
;rsz:ﬁmo 2EROC g7 » q=2=/ S13E 122"?“ =
Lo 2)
+ TRACK. ZERO J\a;’“ & = &%l

LAAA-
RP4

2-14

Mini Disk Operation

Power Supply

[e e e

Q2
MJE 3055T

-

I |
| e 2__1 |
| cR6 S |
] IN4002 I
T " i
z1 l |
12 Mci723cP__ 1 0 |
£ R3 Rl
A F~y |2 3560 3o033/2w |]
35T Als !
c2 5% ‘\IF 1| +i2v
TWHT! s R2 R4
il ooz " T N N '3;; c3 0k 322K |
120 VAC P R8¢ 0.001 Ay
80 HZ :D: : ! R7 ’ES 1
1 ! 2v | 1K 220 |
|- ADJ. 6
|- RS i
'RE:iL ol 33K
00—
CRi +— 2 {12V RETURN
g CRI7 || 7sos |2 |
340T-05
CR(8
GRN cR2 +Ci +C4 __,;74 sy
== 2200 3 = 220
25 6 |
%v 3 |5VRETURN
NOTES: e e e e Jd S
UNLESS OTHERWISE SPECIFIED: Ne— 14h-Ne
P 13l
I. ALL RESISTORS ARE 1/4 WATT, 5%, CE‘;‘:&%’;TS’EL"Q;_a lz_sREQ comp
RESISTOR VALUES IN OHMS, K=1000. T SENSE)S 12 Vecs
— v
2.CAPACITOR VALUES IN MICROFARADS SNV INPUT r
AND WORKING VOLTAGE . ronTmy VNE:F—Z lg :\I/‘zjm
3.~ INDICATES CLOCKWISE ROTATION. v -7 8-NC
cc—

MCI723CP TOP VIEW

2-15

Mini Disk Operation

Making a TRSDOS BACKUP

Before you do anything else with your TRSDOS diskette, follow these
instructions for making a “‘safe copy’’ of your system software. That
way, if anything should happen to your original, you won’t be “out
of business” while you wait to get another one.

Connect the Mini Disk system and power it up as described in the
Mini Disk Operation chapter. Be sure your TRSDOS diskette is in
Drive O when you turn on the CPU. (And just for safety, leave the
write protect tape on the TRSDOS diskette until you’ve duplicated
it.)

If you have more than one drives connected, place a blank diskette
in drive 1. If not, have the blank diskette handy — BACKUP will tell

you when to insert it into drive 0. Do not place a write protect tape
on the blank diskette.

After you power on the CPU, the display will read

TREDOS - DISK OPERATING SYSTEM - VER 2.1

[0S RERDY

Type:

The system will then display:
TRESDOS DISK BACKUP UTILITY WER 2.1

If you have only 1 drive connected, type:

SOURCE DRIVE HUMBER
DESTINATION DRIVE NUMBEE

If you have two or more drives, type:

SOURCE DRIVE NUMEBER 7 @ ENED
DESTINATION DRIVE NUMBER ?

Now type in the date in MM/DD/YY form. For example, if it’s
August 3, 1978, type:

BRCKUFP DHTE <MM/DDAYYD 7 4

TRSDOS will then start the BACKUP procedure. First it will format
the blank diskette, locking out any defective tracks; then it will
duplicate the contents of the TRSDOS diskette onto it.

2-16

Mini Disk Operation

If you are using only one drive, BACKUP will tell you when to insert
the destination (blank) diskette, and when to re-insert the source
(TRSDOS) diskette. During the BACKUP process, you will have to
swap the two diskettes several times.
When the process is completed, the message:

BRCKUF COMPLETE - PRESS ENTER TO CONTINUE
will be displayed.
If TRSDOS instead displays the message:

BRACKUP REJECTED DUE T o .. 2

then erase the diskette with a bulk eraser (Radio Shack Catalog
Number 44-210) and repeat the BACKUP procedure. If it still won’t
work, you may need to try using another blank diskette.

2-17

TRSDOS
An Overview

noonxs-

Contents of This Section

Introduction 2
EnteringaCommand 5
File Specification 6

Section 3 - Page 1

TRSDOS Overview

Introduction

TRSDOS, like the entire TRS-80 Microcomputer System, is designed
to satisfy a broad range of users, including:

. The novice to computers, who wants to start simply and learn
the details gradually

) The experienced programmer, who expects to write complex
programs, and may want to use some of the system routines
on a machine language level, to accomplish a variety of
sophisticated, customized applications

. The pure ‘““user”, who is only interested in using programs, not
writing them (for example, a clerk using an inventory program
on the office TRS-80).

What Is an Operating System?

By the time you finish this book, you’ll have a pretty good idea . . .
But for the time being, here’s an overview.

An operating system is a master program that allows a complex
computer system, including various Input/Output (I/O) devices,
storage devices and programs, to interact efficiently and with
apparent simplicity. The operating system makes sure everything

"that has to be done, gets done — and you don’t even have to know
what it is that ““has to get done”!

Here’s a rather arbitrary breakdown of what an operating system
does (see Glossary for unfamiliar terms):

. Interfaces the central processing unit (CPU) with the various
input/output and storage devices

. Accepts and interprets operator commands

. “Shepherds’” your programs (and system utilities you request)
in and out of the execution sequence, by allocating CPU time,
I/O channels, storage and other system resources

. Handles interrupts, and oversees the execution of both
foreground and background tasks

. Provides fundamental routines which would otherwise have to
be included in every program; this saves memory and pro-
gramming time

3-2

TRSDOS Overview

You don’t always have to be aware of the operating system to use it.
For example, when you’re using DISK BASIC, you don’t see
TRSDOS at all. But the system is still there, executing a program
called BASIC; BASIC, in turn, executes your own programs and
commands.

At other times, the operating system may be quite visible to you,
allowing you to enter system commands directly. This is the case
with TRSDOS and its “DOS READY” mode.

What Is TRSDOS?

The TRS-80 Disk Operating System (TRSDOS) is a comprehensive
set of system routines and file management utilities. Much of its
complexity (and power) relates to the fact that it is disk-based.

The system is loaded from diskette, and uses diskettes to store
internal bookkeeping information as well as data and programs you
create. TRSDOS uses completely dynamic disk space allocation,

so you can open and manipulate files freely without worrying where
they are physically located on the diskette. When a file fills the
space currently allocated to it, TRSDOS automatically finds and
acquires more space to accommodate additional data (assuming
space is available on the diskette).

(All information on a diskette — programs, data, and TRSDOS
itself — exists in the form of files. For more information on files,
see the Glossary, Files Entry, and the Technical Information chapter.)

In addition to system routines which perform the functions
described above under “What is an Operating System?”’, TRSDOS
includes several file management utilities to let you manipulate and
modify existing files on the diskette: copy, append, rename, change
the protection status, etc.

33

TRSDOS Overview

How TRSDOS uses RAM

TRSDOS consists of:

an executive program file

auxiliary system-routine files

a library-command file

extended utility files (BACKUP and FORMAT)
and the DISK BASIC file.

The executive program is loaded into RAM on power-up, and remains
there at all times while TRSDOS is running. For this reason it is
called the “‘resident” TRSDOS program. It includes certain system
routines, tables, pointers, and Input/Output drivers.

The auxiliary system files contain routines and commands which
are loaded as needed to execute your commands and programs.
These routines load into an “overlay’ area of memory. When
TRSDOS has executed the routine, another one may be loaded in
the same area, or “overlayed’. The use of overlays means that
execution of system routines will not affect your memory area
(addresses above 51FF hex).

The library command file contains the routines for executing most
of the operator commands. These routines load into memory
addresses from 5200 to 6FFF. Therefore your machine language
programs should generally be located above 6FFF. That way they
won’t be affected by execution of the library commands.

The TRSDOS extended utility programs are loaded when you type in
their file names, BACKUP and FORMAT. These programs can use
all available memory — even the resident TRSDOS program is wiped
out when they are loaded.

DISK BASIC is a set of enhancements to LEVEL II BASIC, When
you type in its file name, BASIC, it will load into memory beginning
at 5200, and begin execution.

34

TRSDOS Overview

Entering a Command

Whenever the prompt,
DOS RERDY

is displayed, you may enter an operator command. In its simplest
form, an operator command is just a single word — a system or library
command, the name of an extended utility program, or the name of a
user command program. All these categories will be detailed later.

As an example,

DIR

tells TRSDOS to display the user file directory for drive O.

In general, operator commands will require more than one word;
for example, to kill (delete) a certain file, you have to specify the
file name.

CKILL ®YZ

tells TRSDOS to find the file named XYZ, eliminate it from the
directory of the diskette which contains it, and release the space
occupied by that file.

In general, an operator command consists of a command followed by
one or more file specifications, followed by special parameters:

command [Yfilespec] [B(param)] [BTO] [Vfilespec] [B(param)]

where filespec is a valid TRSDOS file specification (more below)
param is a parameter which details how the command affects the
specified file(s).

If this command format seems complex, don’t worry; that’s because
it’s so generalized. The actual commands can be quite simple, as
you’ll see from the examples given with each command.

Whenever you finish typing in a command, press ENTERS
TRSDOS will then process the command as follows:

1) Check to see if it’s a system or library command; if so, execute
it immediately . .. otherwise

2) Check to see if it’s the name of a utility program; if so, execute
it via the extended utility package. .. otherwise

3) Examine the diskette directory on each drive to see if the
command is listed as a user command file; if so, load and
execute the file.

TRSDOS Overview

-~~~ "~

File Specification

A file specification (filespec) is the way you reference a particular file,
whether you’re operating under TRSDOS, DISK BASIC, or any other
command program (e.g., TAPEDISK).

Disk file specifications have the following format:

namel|/ext] [.pw][:d]
where

name is the file name, consisting of from 1 to 8 alphanumeric
characters, the first of which must be alphabetic

ext is an optional extension of the name, consisting of from
1 to 3 alphanumeric characters, the first of which must be
alphabetic. The extension, if used, must be preceded by a
slash symbol.

pw is an optional password, consisting of from 1 to 8 alpha-
numeric characters, the first of which must be alphabetic. The
password, if used, must be preceded by a period symbol.

:d is an optional drive specification, with d equal to 0,1,2 or 3,
depending on which drive you wish to specify. The drive
specification, if used, must be preceded by a colon.

Do not embed blanks in a file specification. If you do, TRSDOS
will terminate the filespec at the first blank; if the truncated filespec
is valid, you won’t receive an error message.

Valid file names:

A INVNTORY DATA11

GAMES/BAS SORTER/VR1 SORTER/VR2
PAYROLL/BAS.SESAME SECRETS.MYNAME POETRY/TXT:1
DRIVECHK:1 . DRIVECHK:2 AUG3078/DAT.JQD
AUG1578 TAXES/TXT.TEAPARTY:1 CHKWRITR/BAS.VERSION2

To take a completely “filled out™ filespec,

TAXES/TXT. TEAPARTY:1 refers to a file named TAXES, with
an extender TXT, and a password TEAPARTY. This file is
referenced to drive 1. If you are creating a file under that filespec,
it will be placed on drive 1. If you are reading or writing to the
file specified, TRSDOS will reference drive 1 for the file.

3-6

TRSDOS Overview

What makes a particular filespec unique?

The name, extension and drivespec all figure into the uniqueness
of a particular filespec. The password does not.

For example, the following filespecs refer to distinct files:

A A/BAS A/CMD
DRIVECHK:0 DRIVECHK:1 DRIVECHK:2 DRIVECHK:3

However, the following filespecs cannot be used to reference
distinct files:

RECEIPTS RECEIPTS.AUG3078 RECEIPTS.AUG3178

(There are cases where two different passwords are used to access
the same file; see TRSDOS Library Commands, ATTRIB.)

More on Extensions

The particular extension you use can be purely arbitrary and
personalized. Used this way, extensions give you an extra three
characters to work with in creating a suitable file name.

Examples:

PAYROLL/AUG PAYROLL/SEP PAYROLL/OCT

However, extensions become more meaningful when they are used
as type specifiers, using some convention. Here’s a recommended
set of extensions:

/BAS BASIC program file stored in compressed format

/TXT ASCII text: BASIC program saved in ASCII form, or
source file, etc.

/CMD machine language command file
/CIM core (RAM) image file, not necessarily executable

/REL relocatable machine language program file

/SYS system program — files which are part of TRSDOS. Don’t
use for your files.

/OVn overlay number n

/DVR I/O driver module

37

TRSDOS Overview

One advantage of this usage is that anyone looking at a directory
listing of a diskette will know what kinds of programs he’s
looking at.

Another advantage is that TRSDOS is equipped to recognize
certain extensions. For example, if a file has the extension /CMD,
then TRSDOS will load and attempt to execute that file when
you type:

filename [IEF3]

omitting the extension /CMD.
That’s why you can execute the file BASIC/CMD by typing

EISAENTER

Similarly, your own programs can be written to recognize
extensions.

More on Drive Specifications

If you give a drive specification, TRSDOS will use the specified
drive in executing the command. If you omit a drivespec,
TRSDOS will search through the directories of all drives in use,
starting with drive O; the first drive with the correct name/
extension will be used. However, if the command requires a file
creation, TRSDOS will skip over to the first non write-protected
diskette.

For example, suppose four files named DRIVECHK are contained
on drives O through 3. Then every reference to DRIVECHK (no
drivespec) would go to drive 0. The filespecs DRIVECHK:0,
DRIVECHK:1, DRIVECHK:2, DRIVECHK:3, would allow each
of the four files to be accessed.

More on Passwords

The password is assigned when the file is created, and may be
changed via the ATTRIB or PROT commands. Files with
passwords can only be accessed by reference to the password, or
to the diskette’s Master Password. So if you assign a password to
a file, don’t forget it!

It’s important to realize that every file has a password, even if you

do not specify it explicitly when the file is created. In such cases,
a field of 8 blanks becomes the password.

3-8

TRSDOS Overview

For example, if SAMPLE (a file with no explicit password) exists
and you attempt to create a new file, SAMPLE.WATERBOY,
TRSDOS will give you a FILE ACCESS DENIED message, since
in effect you’re trying to access an existing file with the wrong
password. The correct password is a string of 8 blanks — which
you can omit from the file specification, since 8-blanks is the
default password.

39

TRSDOS
Commands

nooWnI-

Contents of This Section

SystemCommands 2
BASIC2 2 TRACE, 10
DEBUGooovv. 3

LibraryCommands 11
AUTO 11 FREE 19
ATTRIB 12 LIB ... 19
CLOCK 14 LIST ... 20
COPY ... 15 LOADo . 20
DATE 15 PRINT 21
DEVICE ..., 16 PROT ..\ 21
DIR ... 16 RENAME 22
DUMP 18 TIME 23
KILL oo 19 VERIEY ..., 24

Section 4 - Page 1

TRSDOS Commands

System Commands

These three commands (BASIC2, DEBUG, TRACE) leave user
RAM (hex address 5200-End) “‘untouched”. The necessary code
for these commands loads into the overlay area between the
resident program and hex 5200. The other commands, referred to
as library commands, use addresses between hex 5200-6FFF.

So locate your machine-language routines above hex 7000 to protect
them from the utility commands.

BASIC2 (jump to LEVEL II BASIC)

BASIC2

This command has no arguments or parameters. It simply transfers
control to LEVEL II BASIC. Once it has been executed, TRSDOS
is no longer resident in RAM. Your TRS-80 will then function as

a LEVEL II machine.

You may want to do this to gain memory for programs which
don’t require disk capabilities. Another possible application
would be to LOAD a machine language routine from disk into
high memory, and then jump to LEVEL II BASIC via BASIC2,

so you can access the routine from LEVEL 11, via a USR function.

Example:

—

MEMORY S1ZE?

RADIO SHACK LEVEL 11 BRSIC
RERDY

b

To re-load TRSDOS, press the Reset button or type

*7

4-2

TRSDOS Commands

DEBUG (real-time debugging program)

DEBUGI(b(param)]
where param = ON or OFF, and ON is the default.

DEBUG is a real-time debugging package for use with machine
language programs, including both foreground tasks and back-
ground programs. (See Glossary.) DEBUG lets you examine and
alter the contents of the Z-80 registers and RAM locations;
jump to specified addresses and begin execution with optional
breakpoints; step through programs one instruction (or one
CALL) at a time, and more.

All address and byte values in this DEBUG section are given in
hexadecimal form — which is the form required by DEBUG.

DEBUG loads into the overlay area; addresses above 51FF are
unaffected.

Type:

DEBLG
to enable the debugging facility. Normal TRSDOS command
interpretation continues; but the debug program is now set to
load and execute under any of the following conditions:

1. When the BREAK key is pressed.

2. After a program is loaded and before its first instruction
is executed,

3. Upon detection of a disk-related error.

Note: TRSDOS system routines and execute-only user routines
cannot be fully debugged: you can use DEBUG to examine/alter
register and RAM contents, but not to single-step, jump, etc., when
these protected programs are the “‘targets’” for DEBUG. Furthermore,
since DEBUG loads into the overlay area of RAM, you can’t use it
with other overlay programs and routines.

DEBUG offers two display formats:

register display with indirect RAM
plus any 64-byte “page” of RAM;
full screen, 256-byte page of RAM.

4-3

TRSDOS Commands

In the register display format, DEBUG displays all the Z-80 registers,
organized for interpretation either as two 8-bit registers or as 16-bit
register pairs. Since most programs use several sets of register pairs
as indirect pointers or indexing registers, 16 bytes of indirect data
are presented with each register pair. Each of the flag registers is
shown with an ASCII representation of its flag bits.

An additional 64 bytes of memory are displayed in four lines at the
bottom of the display.

Here’s a typical DEBUG display sequence. Note that the values in
your display will typically vary from these.

fHon

A C2
45
5B 1
HIFNG
> 51 510D FC
40 4F 52 53
F2 51 @8
Bi EZ @3 6
FF IF3 AF
52 @4 DD
B 73 E1
W 4 FE
T 2B 36
;7

DE @& 17

IOV |

o

2oL
b

ALK

b Led Fod T e =) 50 T
[R X s N : Y O e

ot Bt B

TR TR VR T T TR VR (R /R

e

wowomoBouo

NN

=
i &
=

Il el et

E

s Bed P3P
;‘E“"; ;{_-:j 5 T 5 O

4-4

TRSDOS Commands

In this display, register B contains the hex value OA, and register C
contains 3E. Taking the BC register pair as a pointer, it points to
address OA3E. Therefore, the contents of memory locations 0A3E
through 0A4D are shown to the right of the BC = 0A3E =>marker.
In this case, address 0A3E contains 09, OA3F contains BA, etc.

The flag registers F and F’ are handled differently. For these
registers, the hex contents of the flag register is displayed, along with
a bit-by-bit alphabetic code which makes it easier to interpret the

flag status. For example, bit 7 (leftmost bit) is the sign bit, so the
alphabetic code shows an S in that position whenever this bit is “set”.
Here’s a complete table of codes for all the flag bits:

bit status if set ‘if not set
Sign

Zero

unused
Half-carry
unused
Parity/overflow
Negative

Carry

O N Wh v
AZT=T—N®
|

In the above display, none of the F flag bits are set (discounting the
unused bits 5 and 3), and all of the F’ flag bits are set.

Notice the four additional lines below the PC register display. Each
line shows the contents of 16 bytes, starting at the address to the left
of the arrow; the four lines always show a total of 64 bytes of
contiguous memory i.e., locations with sequential addresses. The
starting point in this four-line display is either 0000 or the last
command you specified with the D command (more later.)

The blank area in the lower left of the Display is where commands
you enter will be displayed.

4-5

TRSDOS Commands

DEBUG Commands

Note that some commands are executed as soon as you press the
specified command key; other commands are executed only when
you hit <SPACE> or [dJfd3] , as indicated below.

Operation Performed

Entry
Command Required
A none
C none
Daaaa <SPACE>

Gaaaa[,bbbb]| ccce] |

H none
1 none
Mlaaaa <SPACE>

4-6

Shows the ASCII or graphics
character corresponding to each
value displayed. Shows a period
when the value is not displayable
as an ASCII or graphics character.

Single-steps next instruction, with
CALLS executed in full. (Next
instruction is defined by PC
register.) Target program cannot
be a system or execute-only file,

Sets memory display starting

address to aaaa. In full screen
mode, sets starting address so
aaaa is contained in display.

Place aaaa in PC register and
executes with optional
breakpoints at bbbb and cccc.

Displays all memory and register
values in hexadecimal form.

Single-steps next instruction
(defined by PC register). Target
program must not be read-
protected.

Sets the current modification
address to aaaa. The modification
dialog will then be displayed in
the lower left of the screen. If
aaaa is omitted, the last modifica-
tion address will be used for aaaa.
If aaaa is currently in the display,
its contents will be surrounded

by a pair of vertical bars.

TRSDOS Commands

Entry
Command Required Operation Performed

Rrpbdddd <SPACE> Loads register pair rp with the
value dddd.

rp may be any register pair: AF,
BC, AF’, BC', IX, IY, PC, etc.

S none Sets display to full screen
memory mode, showing 256
contiguous bytes. Press X to
return to register display format.

U none Dynamic display update mode:
lets you observe the execution
of a foreground task. Hold down
any key for a couple of seconds
to exit this mode.

X none Sets display to register format;
also cancels any command you
are in the process of entering,
except R-command.

; none Increments memory display by
one page (in register display
mode, page = 64 bytes; page =
256 bytes in full screen mode).

— none Decrements memory addresses
displayed by one page.

Note: You cannot use the backspace key (<) to delete mistakes
made while entering commands. Instead, just hit the X key to
cancel the command. Or, if you made the error while typing an
address or value, just type the correct address immediately after
the incorrect address. DEBUG will only look at the last four
digits entered.

For example,
D4v4888 <SPACE>
tells DEBUG to display the page of memory containing address 4080.

4-7

TRSDOS Commands
“

More on the M-command (modify memory)

Any time you wish to alter the contents of a memory location, type
Maagaa and press the <SPACE>. This sets the memory modification
address to aaaa and puts a memory modification prompt in the lower
left corner of the Display. For example, typing

M7eFEa <SPACE >

produces:

)
[

[P DR e
Pt BRI AR ox]

HotoM

Note the vertical bars around the value of 7F00; These will appear
wherever the modification address appears on the screen.

To modify the contents of 7F00, type the new, two-digit contents
and press <SPACE>. The display will then be updated, and
DEBUG will increment the modification address by one.

To leave an address contents unchanged, simply press <SPACE>
without first entering a new contents. This will increment the
modification address and leave the previous address unchanged.

To exit the modify memory mode, type X or 334 .

If you simply type:
M <SPACE>

DEBUG will default to the last specified modification address, if any;
otherwise 0000 will be used.

Frequently, two values on the display will be highlighted by vertical
bars — one in the 64-byte memory display area, and another in the

indirect memory area associated with the register pairs.

This is because the contents of the modification address happens to
be displayed twice, one directly, one indirectly.

48

TRSDOS Commands
- . |

More on the G-command

To return to TRSDOS from DEBUG without re-initializing, type
LI FNTER

DEBUG will then be re-entered under any of the three conditions
noted above.

To disable DEBUG after using this exit, type
DEBUG COFF> [ENE:

DIR

To begin execution at the address in the PC register (while you're
in the DEBUG mode), type

T ENTER
To reinitialize TRSDOS, type

BN ENTER

More on the U-command (update display)

In the Update mode, only foreground tasks are executed. So to see
anything happening, you need to look at registers or memory
locations used by a foreground task.

The real-time clock makes a good example.
Type:
Dadn <SPACE>

to display the values 4040 through 4046. These addresses store the
time and date, as follows:

address contents

4040 25mS real-time scheduling counter
4041 seconds

4042 minutes

4043 hours

4044 year

4045 day

4046 month

Now hit U and you’ll see the values updated by the clock foreground
task.

4.9

TRSDOS Commands

Other applications for DEBUG

DEBUG can be accessed via DISK BASIC, to help you locate stack
pointers, table addresses, etc. See DISK BASIC.

DEBUG is also a handy way to create short object code programs,
which can then be DUMPed onto diskette.

To disable DEBUG

As long as DEBUG is in the overlay area, TRSDOS may enter the
debugging program unexpectedly, for example, upon an error. If
you don’t want this to happen, disable DEBUG by typing:

e ENTER (to return to TRSDOS)
=SS ENTER
DIR

TRACE (dynamic display of PC register)

TRACE[B(param)]
where param = ON or OFF; ON is the default.

The TRACE command enables a foreground task which displays the
contents of the user’s program instruction counter (PC register) in

the upper right of the Video Display. The 4-digit hexadecimal value
will be updated every eight milliseconds with the current background
program’s execution address. For example:

ILGHR ENTER

Since it is a foreground task, TRACE operates at all times — in DOS
READY mode, DISK BASIC, or any other program. To temporarily
disable TRACE, disable all interrupts (CMD*““T”” in DISK BASIC).
When interrupts are re-enabled CMD“‘R” in DISK BASIC, TRACE
will start up again.

Used with the DEBUG program, TRACE can be invaluable in
debugging machine-language programs. It won’t be of much use
during BASIC program execution, though. To permanently stop
TRACE, execute the command:

TRACE ¢OFF)

4-10

TRSDOS Commands

Library Commands

These commands are overlayed into the RAM area hex 5200-6FFF.
They are loaded as requested in blocks; so, for example, DATE and
TIME are both loaded when either is requested. TRSDOS will not
waste time loading a command if the code is already in RAM.

AUTO (automatic key-in on power-up)

] . AUTO [bdos-command]

where dos-command is a filespec for an operator command
[or an executable command file.

Note: To use AUTO, you must remove the write-protect tab from the
system diskette.

The AUTO command lets you modify the power-up sequence, by
specifying a command to be executed immediately after power-up.
Typing:

AUTO dos-command

causes TRSDOS to write dos-command as an “‘automatic key-in”
on the drive O diskette, replacing any previous automatic key-ins.
From that point on, every time you power up using that TRSDOS
diskette, dos-command will be keyed in automatically whenever
TRSDOS is initialized. An automatic key-in takes the place of
keyboard input.

To restore the power-up sequence to normal, type:

AUTO

This will eliminate any automatic key-ins.

Examples:

AUTO CLOCK on subsequent power-ups, the display clock
command will automatically load and execute.

AUTO BASIC on subsequent power-ups, TRSDOS will load
DISK BASIC and begin the initialization dialog.

NOTE: You can override any automatic key-in by holding down the

key during power-up. This may be your only way of
regaining control of the system, for example, if dos-command is not

a working command program.

4-11

TRSDOS Commands

L

ATTRIB (set protection attributes)

ATTRIBWfilespecW(param| param . ..])

where param can be any of the following:

param meaning
1 make file Invisible to normal Directory command
ACC=pswli assign pswl as the new access password
UPD=psw2 assign pswZ2 as the new update password
PROT=level assign level as the new access protection level:

(KILL, RENAME, WRITE, READ, EXEC)

The filespec must exist on one of the connected drives.

This command lets you alter the protection status of a file, by
changing passwords and/or the degree of access granted by a
password. (See TRSDOS Overview, ‘‘File Specifications’ section.)

Specifying the I parameter gives the file the invisible attribute. To
display Invisible files in the Directory, you have to specify the

I parameter in the DIR command. There is no way to remove the
I attribute, short of copying the file to a new file which does not
have the I attribute.

Example:

~ ™

DS RERDY

FILE DIRECTORY --- DRIVE 1 MANURL —— 8%/61/78

CHESSACHMD P MENUATRT TESTABRAS P

Dis READY

4-12

TRSDOS Commands

~ A

FILE DIRECTORY --- DRIVE 1 MANUARL -- 89/81/78

CHESS/CHMD P VIDSCANACHMD 1 MEMNUATHT

TESTABRS F

DOS READY

All files are protected with two passwords, an access and an
update password. Access and update passwords may be identical,
and they may consist of all blanks. Use of the update password
grants total privilege to a file — you can kill, rename, write, etc.
Use of the access password, on the other hand, grants a limited
privilege, as specified by a PROT parameter in the ATTRIB
command.

The protection levels form a hierarchy, and each level implies
access to all lower levels.

level privilege

KILL total privilege

RENAME rename, write, read, execute
WRITE write, read, execute

READ read, execute

EXEC execute only

When you create a file, the password you specify becomes both
the access and the update password. (If you don’t specify a
password, a string of 8 blanks is assigned as a default password
for both access and update.)

A
To Disakig PAL

Rel Sed |
oAy Ly G L ans

4-13

TRSDOS Commands

Once you have created the file, you can use ATTRIB to assign
different values to the access and update passwords. Having
two different passwords can be very useful in business applications.

For example, suppose you have a data file, PAYROLL, and you
want an employee to use the file in preparing paychecks. Assume
the file was created with default (blank) passwords.

Then:

RTTRIE PAYROLL CACC=EMPLOYEE. UPD=MANRGER. PROT=RERD>

would allow the EMPLOYEE to read the file, while only
MANAGER could alter it.

To delete a password (set it to blanks), omit the password after
the equals sign in the password specification. For example,

ATTRIE PRYROLL. MANARGER C(RCC=3

sets the access password to blanks, and leaves the update password
unchanged.

Note: To access a file from DISK BASIC requires a privilege of
READ or higher.

CLOCK (display real-time clock)

CLOCK [W(param)]

where param=0N or OFF; if no param is specified,
ON is assumed.

Typing:
CLOCK
causes the internal real-time clock to be forcibly displayed on the

top line of the Video Display (PRINT positions 53-60). Any
characters present at those locations will be overwritten.

The clock display is updated once a second via a “foreground task”.
In other words, as long as the interrupts are enabled, TRSDOS

will periodically interrupt whatever ‘‘background program” is
executing (DISK BASIC, TAPEDISK, etc.), and update the clock
display.

TRSDOS powers-up in a CLOCK OFF condition.

414

TRSDOS Commands

To stop the display-clock function, execute the command:
CLOCK <OFF>

See TIME command for information on the real-time clock.

COPY (make a duplicate file)

COPYWfilespecl YTOWfilespec2

Creates a duplicate of filespecl under the new name filespec2. If
filespec? already exists, its previous contents are lost. The first
file (filespecl) is unchanged by this command.

You must have at least two disk drives to copy a file from one
diskette to another.

Examples:

COPY PRAGEZ/TXT:@ TO PAGET/TAT:1
duplicates PAGE7/TXT on drive 0 onto drive 1, using the same
name/extension.

COFY OLDFILE/BAS. PD@ TO DEADFILE
duplicates OLDFILE under the name DEADFILE. Note that
OLDFILE is protected by a password, while DEADFILE is not.
DEADFILE will be created on the first non write-protected
drive in the sequence 0-3.

DATE (set date)

DATEWmm/dd/yy

where mm is a 2-digit month specification, mm=01 to 12
dd is a 2-digit day specification, dd=01 to 31
yy is a 2-digit year specification, yy=00 to 99

For example, if it’s August 3, 1978, type:
DATE B8/83/78

This command resets the real-time date. At power-on, the date
is set to 00/00/00. The date is updated each time the clock
cycles through a 24-hour period. The real-time clock calendar
includes the logic to account for 28, 29, 30 and 31-day months.

4-15

TRSDOS Commands

P

DEVICE

DEVICE

This command has no arguments or parameters. It simply lists all
currently defined I/O devices: Kl=keyboard, DO=video display,
PR=line printer.

DEVICE
DIR (display directory)

Example:

DIR[b:d] [W(param|,param ...])]

where :d = a drive specification, d=0,1,2 or 3, and
0 is the default
param = any of the following:

param meaning
S display all System and non-Invisible files
I display all Invisible and non-System files
A display disk space allocation for all files displayed

This command reads and displays the file directory of a specified or
assumed drive. If no parameters are specified, only non-Invisible user
files will be displayed.

Disk space allocation is indicated as follows: LRL (logical record
length), EOF (end of file, i.e., highest record number used), and
SIZE (measured in GRANules, where 1 granule = one-half track,
or 1.25K bytes).

Examples:

QLA ENTER

displays all user files on drive 0. A typical output for this command
might be:

—

FILE DIRECTORY --- DRIVE @

TRSDOS -- 18/83/78

YIDSCANZ/CMD CLKARESS/BRS SELECTRC/DVYR
TBUG/CMD EDTASHM/CMD GLOSSHRY/BRS
LISTER/BRS TRPEDISK/CMD KBFIX/CIM
DISKDUMP/BARS GLOSSHCC/BRS VIDSCHAN/CHMD

DOS READY

TRSDOS Commands

DIR 1 (1.5

displays all files, including System and Invisible files. A typical
output for this command might be: '

—

FILE DIRECTORY --- DRIVE 1 MANUARL - @9/81/78

BOOTASYS SIF DIRASYS SIF CHESSACHMD F
MENUATAT TEST/BAS F

bos RERDY

Note the P beside some files. This indicates they have non-blank
passwords.

DIR CAY

gives the disk space allocation on drive O, user files only. Typically:

—

FILE DIRECTORY --- DRIVE TREDLOS -- 11/718/78

EDTASHATHD LEL=
REMACHD LRL=
VYHMTBUGACHD LEL=
SEQCHECK/TKT LRL=
TEUGACMD LRL=

n

| vl L8]

[A L R
PYoenopo o0 OO

Al P o
L e ',;hm(.’l
[e 20 SR S s e S

TAPEDISK/CHD LEL=
CPRINT/BAS LEL=
HMRSHACHD LEL=

[onl ol

A
wn

DOS RERDY

If a Directory listing cannot fit on the screen, only the first 12 lines
will be displayed. Press any key to see the remainder of the listing,
in increments of 16 lines.

4-17

TRSDOS Commands

DUMP (dump memory to disk)

DUMPWYfilespech(START=X'aaaa’ END=X'bbbb'[TRA=X'cccc'])
where aaaa, bbbb, cccc are 4-digit hexadecimal addresses

aaaa = starting point in RAM of the machine
language program or data block to be
dumped to disk; aaaa must be greater than
6FFF.

bbbb =ending point in RAM of the block; bbbb
must be no smaller than aaaa

ccce = transfer address; when TRSDOS attempts to
execute the file, it will start at cccc. If ccce
is omitted, 402D will be used. This is the
address of the normal re-entry into
TRSDOS (i.e., re-entry with DOS READY
displayed; no re-initialization).

If filespec already exists, its previous contents will be lost.

If filespec does not include an extension, TRSDOS will automatically
assign the extension CIM (core image) to the file.

Once you have dumped a machine language program onto disk, there
are two ways to execute it.

1) Simply type filespec . TRSDOS will load the
file and begin execution at the transfer address.

2) Type DEBUG and then filespec
After TRSDOS loads the file, it will enter the DEBUG
package. PC will contain the transfer address. You can
then single step the program (I command), call-step
(C command), or execute it in full by typing:

G
Note: A file with the extension /CMD can be loaded and executed
simply by typing the file name, without the extension, and
pressing . TRSDOS will supply /CMD as a default
extension.
Examples:

DUMP GRAPHICS (START=X 78807, END=X 78R8, TRA=X"708a" >

DUMP DRTR/CTH: 1 (STRRT=X 886a‘, END=X- 8858

4-18

TRSDOS Commands

KILL (delete afile)

| KILLpfilespec

This command deletes the specified file and frees the space for use
by the system.

If no drivespec is included in the filespec, TRSDOS will search for
the first drive which contains filespec, and attempt to delete that
file. If the diskette is write-protected, TRSDOS cannot KILL the
file.

Example:

KILL OLDFILE/BAS. FRSSWORD

FREE (display free space on all drives)

FREE

- This command has no arguments or parameters. It displays the
amount of free space remaining on all drives in use, in terms of files
available and unused granules. (Each diskette can contain up to

48 user files; data diskettes have 67 granules available for user files;
TRSDOS diskettes, 44 granules.)

For example:

—

DRIVE ® -- TRSDOS 4@/21/78 37 FILES, 25 GRANS
DRIVE 1 -- TRSDOS 18/63/7 33 FILES, 27 GRANS

oS RERDY

LIB (display library commands)

LIB

Requires no arguments or parameters. This command displays all
TRSDOS system library commands available. These are the
commands which load between hexadecimal 5200 and 6FFF.

For example:

LIE

4-19

TRSDOS Commands
15t

LIST (list text file contents to display)

LISThfilespec

Reads the specified file and lists its contents on the Video Display.
Because LIST gives an ASCII representation of the data in the file,
filespec should refer to a text file. If you LIST a non-text file, the
display will be filled with a meaningless sequence of ASCII and
graphics characters.

Text files include:
. BASIC programs saved with the A option

. data files created by BASIC sequential write (PRINT#n)
statements

. assembly language source code; etc.

To temporarily freeze the Display during LIST execution, hold down
the SHIFT and @ keys.until the listing pauses; press any key to resume
execution. TRSDOS will only accept such a pause after listing a
complete physical record — that’s why you need to hold down the
SHIFT @ keys until TRSDOS “‘notices” your pause command.

Example:

LIST PROGLATHT

LOAD (load machine language file)

LOAD#Wfilespec

Loads the specified file into RAM and returns control to TRSDOS.
The file specified must contain Z-80 object code, and normally
would have been created by a DUMP or TAPEDISK command.

LOAD is useful for loading several programs into memory, so that
all of them can then be called by a master program, which may be
another machine language routine or a BASIC program. (Of course,
all the different files must load into non-overlapping areas of RAM.)

To load subsidiary object code programs and then execute them
via a master object code program, LOAD each of the subsidiary
programs, then type the master filename and press [EYRIE;] .

Examples:
LOAD GRAPHICS
LOAD DATRACIM:1

4-20

TRSDOS Commands

PRINT (list text file to line printer)

PRINTbfilespec

Works just like LIST, only the output is sent to the line printer. The
file should be in text (ASCII) form.

Examples:

PRINT SEGCHEK/TAT
FRINT PAGE?/THXT @

PROT (use diskette’s master password)

PROT[B:d] [B(param|[,param . ..]1)]

where :d = a drivespec, d=0,1,2,3; if no drivespec is
given the first drive is used
param can be any of the following:

param meaning

PW change Master Password

UNLOCK remove passwords from all user files
LOCK assign the master password to all user files

LOCK and UNLOCK are mutually exclusive; use only one.

This command changes the protection status of all non-System files
on the specified drive. To use it, you need to know the diskette’s
Master Password, which is assigned during FORMAT or BACKUP.
The diskette you reference must not be write-protected.

Note: Your TRSDOS diskette has the password, PASSWORD.

To change the Master Password, specify PW as a parameter. To
remove passwords from all user files, specify UNLOCK. To place
the diskette’s Master Password on all user files, specify LOCK.

(The Master Password then becomes the update and access password
for those files.)

Examples:
PROT -1 CUNLOCK? [T

After you enter this command, TRSDOS asks for the Master Pass-

word for the drive 1 diskette. If you enter the password correctly,

TRSDOS will remove all user assigned passwords from files on

that diskette.
s SN

4-21

TRSDOS Commands

FROT (P LOCKD

After you specify the Master Password correctly, TRSDOS will
prompt you to enter a new Master Password. This new password

will be assigned to all user files, since the command included the
LOCK option.

A typical display sequence using the PROT command:

—

DS READY
(ENTER
MASTER FASSHORD
D05 READY

JENTER

FILE DIRECTORY -—— DEIVE & TRSLOS -— 1872178

EDTRSMACHMD F REMSCHME F WIDECANASCHD P
YHMTBUGACHD P SEQCHECKSTAT F TRUGSCHD R
THPEDISKACHMD F HiRSHACHD P

[0S REARDY

Note that all user files are now protected with the Master Password.

RENAME

RENAMEWfilenamel [Jextl] [.psw] [:d) bTOWBfilename2|/ext2]

where filenamel, filename2 are TRSDOS file names,
extl,ext2 are extensions
:d is a drivespec (d=0,1,2,3)
psw is a password

This command changes a file’s name from the first name/extension
to the second name/extension. Note that the second name/extension
should not include a password or a drivespec. The first file’s
specification may include a password and drivespec, as required to
identify a desired file.

RENAME cannot be used to change a file’s protection attributes
or to move it to another drive. The previous passwords, protection
level, and Directory attributes (Invisible for non-Invisible) will be
assigned to the renamed file, and the file will remain on the same
diskette.

RENAME also checks to see that the intended new name does not
duplicate a filename currently on the same diskette. If it does, the
command is cancelled and an error message is displayed.

4-22

TRSDOS Commands

Examples:

RENAME MATHFARK TO MATHFRKABRS
adds an extension to the filename.

REMAME RECDEADAT TO ABCDEFADAT
changes the file name only.

RENAME PRYROLLLATKT. GSR TO PAYROLLZATHT
changes the filename; the password is retained automatically.

RENAME FILEL:Z TO FILEZ
changes the filename of the file on drive 3 only.

TIME (set real-time clock)

TIMEWBAAL :mm:ss

where #h is a 2-digit hours specification
mm is a 2-digit minutes specification
ss is a 2-digit seconds specification

This command sets the clock. On power-up, the clock is reset to
00:00:00.

Note: TRSDOS maintains a 24-hour/day clock format. After
23:59:59, the clock starts over at 00:00:00, and the day is
incremented.

The current time is stored at locations hexadecimal 4040-4046;
these values are updated via the realtime clock as long as interrupts
are enabled.

Example:
TIME ©68:24:00

See DATE and CLOCK

4-23

TRSDOS Commands

VERIFY (automatic read-after-write)

VERIFY[W(param)]

where param = ON or OFF; ON is the default.

VERIFY (AR

causes TRSDOS to verify all user disk writes (for example, file-writes
from DISK BASIC). This will be useful when you want to be sure
that no data is lost or altered during a disk write. For example,
before you COPY a file, you may want to enable VERIFY.

However, when VERIFY is on, disk accesses are only about 50
percent as fast as normal.
Typing:

VERIFY (OFF > [LES)
disables the automatic read-after-write verification.
(note that TRSDOS powers up in a VERIFY (OFF) condition.)

Verify does not affect system table and directory writes; they are
always verified.

4-24

Extended
tilities

noonxI-

Contents of This Section

TRSDOS Utilities i 2
BACKUP 2 FORMAT 4

Auxiliary Utilities 6
TAPEDISK 6 DISKDUMP/BAS ... 8

Section 5 - Page 1

Extended Utilities

TRSDOS Utilities

These are special programs, not strictly a part of TRSDOS, which
you can call to perform some very useful functions. Unlike system
routines and library commands, these extended programs may use
memory locations above hex address 6FFF; therefore any programs
you have in RAM may be lost when you load a utility program.

BACKUP (duplicate a diskette)

BACKUP[®:dIpTOY:d2]

where :dl is a specification for the source drive
:d2 is a specification for the destination drive
dil,d2=0,1,2 or 3.

If you omit the drivespecs, BACKUP will prompt you to enter the
source and destination drive numbers one at a time.

This utility duplicates an entire TRSDOS or data diskette. You can
use any two drives for the backup, or you can perform the backup
using drive 0, by swapping source and destination diskettes when
BACKUP tells you to.

If the destination diskette is unformatted, BACKUP will format it,
locking out any defective tracks, and will then proceed to copy

all source disk files onto it. (If the destination disk cannot contain
all the source disk data because of locked out tracks, the backup will
be rejected.)

BACKUP will accept a pre-formatted diskette only when its Master
Password and Diskette Name match that of the source disk. In this
case, BACKUP will skip the formatting step and begin the copy and
verify process. If for some reason, BACKUP rejects a diskette,
erase the diskette with a bulk eraser and try again.
Examples:

BACKUF

BRCEUF & TO .8

BRCEUR @ TO 4

Here’s a typical BACKUP sequence, using only Drive 0.

5-2

Extended Utilities

—~

TRSDOS BRCKUP UTILITY VER 2.1

BACKUF DATE <MM/DDAYY> 7

LINSERT SOURCE DISKS:

BACKUP will then prompt you to insert source (originai) and
destination (duplicate) diskettes as necessary.

When using two drives for the BACKUP, you won’t have to do any
swapping.

5-3

Extended Utilities

L]

FORMAT (prepare a data diskette)

FORMAT

This utility lets you prepare data diskettes containing a minimum of
system information and leaving you with a maximum amount of
space for program and data files. (TRSDOS diskettes have 44
granules/55K bytes available for your files; data diskettes,

67 granules/83.75K bytes.

Note: Data diskettes can only be used in drives 1,2, and 3, except
during a BACKUP or FORMAT.

FORMAT takes a blank (new or magnetically erased) diskette,
records track/sector boundaries on it, then initializes it with
directory and bootstrap files. During the formatting process,
TRSDOS will let you specify any tracks you’d like to lock out, so
you can use them for non-TRSDOS files.

Unless you have another (non—TRSDOS) means of accessing the
diskette, don’t lock out any tracks.

FORMAT will lock out any defective tracks, to prevent data
from being lost in these areas.

If you begin to get READ errors during accesses to a diskette,
erase the diskette and re-format it. If there are defective tracks,
FORMAT will lock them out, and you’ll be left with an other-
wise usable diskette.

5-4

Extended Utilities

To lock out tracks. ..

Specify them individually or as a range.

Example:
1,3-5 locks out tracks 1,3,4,5.

TRSDOS will never try to write to locked-out tracks.

Here is a typical FORMAT sequence, using Drive 1.

—

ISk FORMATTER UTILITY 2.1

CREATION DARTE <MM
MASTER PARSSMORD 7

5-5

Extended Utilities

Auxiliary Ultilities
TAPEDISK (copy tape file to disk file)

This utility lets you load a SYSTEM tape into RAM, and then dump
it into a specified file on the disk. (SYSTEM tapes are created with
the Editor/Assembler, TBUG, or supplied by Radio Shack.)

Do not attempt to use TAPEDISK to load tape files which load

below hexadecimal address 54F4 (decimal 21748). TAPEDISK
uses this area.

Note: Most Radio Shack SYSTEM tapes designed for use with
LEVEL II TRS-80’s will not work under DISK BASIC, because of
differences in RAM usage under DISK BASIC and LEVEL 1I1.

To load and execute TAPEDISK, type:
HNANSTEM ENTER
TAPEDISK will come up with the prompt,

?

Any time the prompt is displayed on the current line, you can enter
one of the three TAPEDISK commands.

1) Load from tape
| C

is the command to turn on the Recorder. (To use TAPEDISK,
you should connect the recorder directly to the TRS-80 tape jack,
not to the Expansion Interface jack.)

Type:

%

When the file has loaded, you can load another SYSTEM tape, or
enter another command.

5-6

Extended Utilities

2) Dump to disk

Fhfilenamel Jext] [.password] :dbaaaapbbbbBccce

where filename is a TRSDOS filename
Jext is an optional extension;
.password is an optional password specification;
:d is a required drivespec, d=0,1,2 or 3;

aaaa is the hexadecimal starting address in RAM;
bbbb is the hex ending address in RAM;

ccce is the entry point for execution of the file.
All addresses are in 4-digit hexadecimal form.

When you’re ready to dump the program from RAM onto disk, type in
the F command. For example, if the program loaded into RAM
addresses 7000-70FF, and the entry point is at 700A, you’d type:

7F USRCODEACMD:1 766G 7aFF 706R
After the dump, the prompt will return.

3) Exit to TRSDOS
E l

This command returns you to TRSDOS, via the normal re-entry
(no re-initialization).

Below is a typical TAPEDISK display sequence.

—

DOS READY

DOS RERDY

57

Extended Utilities

DISKDUMP/BAS (examine disk file)

This is a BASIC program. To execute it, you must load DISK BASIC
first, and then load DISKDUMP/BAS:

—

HOW MANY FILES? ENRED
MEMORY SIZE?
RADIO SHACK DISK BRSIC VERSION 1.1

READY -

DISKDUMP lets you look at the contents of any of your disk files.
It will help you experiment with various random and sequential disk
output statements, and also help you to debug disk I/0 routines.

The program is written to dump to the Line Printer. If you do not
have one connected, change all LPRINTSs to PRINTSs (lines
170,240,250) and change line 160 to:
DoSA.3 190,269,270 DEL]Ce
168 GETL, SN
This program prompts you to enter the filename and then to enter
the sector you want to examine. You can simply press
without a number and the sector-by-sector examination will be
sequential, starting with sector 1, the first physical record in the
file.

If you specify a sector number higher than the EOF number
(end-of file), no error message will be given and the “sector” will
appear as zero-value bytes.

The sectors are printed 16 bytes at a time. These 16 bytes are dis-

played first in hexadecimal code, then with the corresponding ASCII
code. The ASCII representation is surrounded by ! symbols. Periods
are substituted for bytes which have no alphanumeric representation.

Below is a typical DISKDUMP session.

—

SECTOR DUMP UTILITY 1.1
FILESPEC:

SECTOR NUMBER ¢OR “ENTER‘ FOR NEXT SECTOR): ENEEEZ

5-8

Extended Utilities
[

FILESPEC:
o] 5
16 6
3z 46
48 49
&4 @b
&a 4z
96 s
i1z 26
1za 4E
144 48
168 4C
176 49
192 2a
2as 42
224 ZA
248 A

SEQCHECK/THT

26 43 40 53 2R 268 42
@b 21 28 28 41 24 3D
41 24 3D 22 22 54 48
4t 28 41 24 D 22 48
32 3B 28 5@ 52 49 4E
24 2B 41 24 3R 47 4F
S 49 4E 54 R S8 S2
49 4D 41 47 45 28 57
26 4E 45 58 54 28 40
32 24 28 39 0¥ 2% 22
49 4D 49 54 45 52 29
25 3D 31 28 54 4F 26
56 52 49 4E 54 26 41
24 2C 49 25 29 20 42
4E 43 38 54 @b 33 35

20 4F 5@ 45 4E 2z 4F

1] ._1-&1
T'-J!\Snm

SECTOR: 1

40 45 41 52 26 31 I8 36
45 4E 4B 45 59 24 3R 49
45 4E 31 3@ @0 31 35 28
22 54 48 45 4E 2@ 32 IS
54 41 24 3B IA 42 24 3D
54 4F 31 38 G0 32 35 20
49 4E 54 22 44 41 54 41
45 40 40 28 41 53 2@ 4F
49 4E 45 2E 2@ 28 22 43

3D 42 59 54 45 28 44 45
2z @D ¥I 3@ 28 46 4F 52
4C 45 4E 26 42 24 29 A
s 4326 4D 49 44 24 28

2 24 28 39 31 29 IE
52 49 4E 54 @D 15

2 31 20 22 54 45 53

Yy oon Wi
l“r&‘nl\.

!5 CLS: CLEAR 168!
'8 18 AF=INKEY$:1!
'FR$=""THEN1A. 15 !
IF A$="E"THEN 23!
L. 268 PRINTRY: (B¥=?
'EFHRS G0TO1E, 23 !
'PRINT (PRINT"DHTR!
tOIMAGE WILL RS OF
NOMEXT LIME. ("C!
THR$:31) "=BYTE DE!
'LIMITERS™. 28 FOR!
'Ix=1 TO LENCES) !
PRINT ASC{MIDSC!

TBE, IO ICHR$(94); !
PIHEXT. 35 PRINT. 5!
'@ OPEN"O", 1, "TES!

TRSDOS
Technical

Information

noonNI—-

Contents of This Section

Memory Organization
Disk Organization
File Structure
System Routines for Assembly I/0
Data/Device Control Blocks
Physical and Logical Records
Fundamental TRSDOS I/OCalls
TRSDOS Error Codes/Messages

NMNONOOTTWNDDN

—

Section 6 - Page 1

TRSDOS Technical Information

Memory Organization

The TRS-80 Disk Operating System is comprised of 1K of ROM
resident CIO (Character-oriented I/O) drivers and 4K of RAM drivers,
schedulers, tables, pointers, etc. The ROM resident CIO drivers are
also used by LEVEL II BASIC and therefore are part of its 12K
ROM requirement.

Since LEVEL II is upward compatible with DISK BASIC, an
additional 0.5K of RAM is required for both versions of BASIC.

This means that user memory starts at hex 5200, resulting in 11.5K
of user RAM in a 16K machine.

Note: The memory which is completely untouched by both
TRSDOS and DISK BASIC code begins at hex 7000.

TRSDOS is comprised of a resident system and several overlays
which are loaded from disk as the need arises (for example, to open
or close a file).

The system has a modular design. System entry-point vectors

are in the lowest portion of the 4K RAM, followed by the interrupt
handling, disk file handling, task scheduling and general purpose
resident system routines. System buffers and overlays comprise the
last portion of the 4K RAM requirement.

Since all major system commands are actually loaded as needed
from disk in the form of utilities (the “library commands™ and the
extended utility programs), the TRSDOS system facilities can easily
be enhanced without affecting the RAM memory requirement.

Disk Organization

Each TRSDOS system diskette contains a TRSDOS system, a utility
command library, a file directory, and system tables.

The minimum system overhead amounts to one full track of directory
information and a half track of TRSDOS bootstrap program and
other information. This means that every TRSDOS diskette is self-
loading, although it may or may not actually contain the TRSDOS
system. This is done to prevent the Computer from attempting to
bootstrap a diskette containing only user data files.

The utility command library is optionally available on the diskette.
Since the utility command programs are not always required,

it will often be advantageous for multi-drive users to format
diskettes for use in drives 1 through 3. Such ‘““data diskettes”
contain a minimum of system code, leaving more space for user

6-2

TRSDOS Technical Information
T T T A R WP RS

files. Maximum file size is limited only by the physical size of the
diskette, since a file must be wholly contained on one diskette.

Each diskette is single-sided and has 35 tracks of information.
Each track contains 10 sectors of 256 bytes each. See Mini Disk
Operation, ““How a Diskette Works”.

Normally, data read/write operations may only be initiated at sector
boundaries, and must consist of exactly 256 bytes. However,
TRSDOS allows the user to have maximum flexibility with minimal
effort by automatically blocking and de-blocking all file accesses

to user-specified logical record lengths, even if this requires
“spanning” of two sectors.

The system disk file structure allows maximum use of disk file space
by automatically segmenting files across a diskette in several small
pieces. These pieces are correlated into one logically contiguous

file by the system without your needing to know the physical file
location. This structure eliminates time-consuming disk-packing
operations.

File Structure

A TRSDOS file is composed of one or more segments of storage
space. Each segment consists of from one to 32 physically
contiguous granules of storage. A granule is the minimum
allocatable unit of storage, and consists of five sectors (1.25K bytes).
(See Figure below).

Since a file is always lengthened by granules, a small amount of free
storage is generally present at the end of every file. This free
storage allows minor file additions to be made in space which is
physically contiguous to the file.

The effect is to decrease the amount of “thrashing” present in a file
which has had frequent additions made. (A wholly sector-mapped
system could not offer this benefit.)

Every time a disk file is extended (either initialized or lengthened),
extra granules may be allocated to that file, depending on the file’s
accumulated length, diskette space, saturation, etc. These extra
granules, along with all granules after the one containing the file’s
EOF mark, are recovered and returned to the system when the file
is closed.

6-3

TRSDOS Technical Information

o e s

A TRSDOS file

FILE: SEGMENT | SEGMENT 2

seamenT: | GRANULE | | GRANULE 2 GRANULE N
GRANULE:[SECTOR X | SECTORX+l | __|SECTOR X+4
SECTOR: | BYTE| | BYTE2 | BYTE3 | |BYTE 256

LRN: Logical Record Number, used to specify an individual,
user-defined logical record. Such a logical record is the
smallest unit of information which can be addressed
during disk input/output (a physical record is the unit
which is actually read from or written to disk).

File: A group of logical records; the largest unit of information
which can be addressed by a TRSDOS command.

Sector: A physical record, composed of 256 contiguous bytes.

Granule: The minimum allocatable unit of storage for a particular
file.

6-4

TRSDOS Technical Information

System Routines for Assembly-Language 1/O

This information is provided for customers who wish to write their
own assembly level I/O routines. An explanation of the calling
sequence and parameters for each necessary 1/O routine is given.

A knowledge of Z-80 machine code is assumed.

The following notations are standard in this section:

HL=> xxxx Registers HL contain the address of (point to)
xxxx in machine format. (If address of
xxxx=34B2H then the values in the registers are:
H=34 ;1=B2)

DE=> xxxx Registers DE contain the address of (point to)
xxxx in machine format. (If address of

xxxx=5AF1H then the values in the registers are:
D=5A ; E=F1)

B=xx Register B contains the numeric value of xx in
binary form. If xx=64 decimal, then B=40H.

A= xx Register A contains the numeric value of xx in
binary form. If xx=127 decimal, then A=7FH.
Register A is used to return the TRSDOS error
code for I/O calls. A complete list of error codes
and their meanings appears at the end of this

chapter. \

Z=0K Zero flag is set (OK) if successful return from the
system routines.

X'nnnn' Hard RAM address in hex notation (e.g., 402D is
X'402D").

LRL Logical Record Length. 1-255 bytes only. You

can define records any length you wish up to 255
bytes maximum. A length of zero is a special
case for physical records only, and indicates

the LRL=256 bytes.

BUFFER 256 user designated bytes in RAM for TRSDOS
to read sectors from or write sectors into. If
LRL=0, this area is the responsibility of the user
to manage before and after I/O. TRSDOS
manages this area if LRL is between 1 and 255
bytes. Do not alter this area when using logical
record processing.

UREC User record: the address of the contiguous
RAM byte-string assigned by the user as his
logical record area. Itslength must be equal to
LRL. It is a different area from BUFFER.

65

TRSDOS Technical Information

DCB before OPEN and after CLOSE:

The DCB is defined as 32 contiguous bytes of RAM designated by
the user. Before OPEN and after CLOSE, it is a left justified,

compressed (no spaces) ASCII string, as in a standard TRSDOS
filespec:

CONTENTS OF 32-BYTE DCB

16 24 32
T T T T T T T T T T T T
FILENAMET /EXT.PASSWORD:DSpbBEBEEEE
N TN VNN NN NS SN NN NN SNV SV NN N VU SN N N SN N U N S TN U [(U (O S T S |

Notes: /EXT, .PASSWORD, :D are optional.
$ stands for a carriage return (X'OD’)
¥ stands for a blank (X'20")

Explanation of DCB while OPEN:

Isb/msb is least significant byte followed by most significant byte in
780 RAM format (i.e. addr=7CC8 in RAM is C8 7C).

Addr. Len. Explanation

DCB+0 — 3 - Reserved
+3 — 2 — Physical Buffer address (Isb/msb)
+5 — 1 — Offset to delimiter at end of current record
+6 — 1 — File drive number residence
+7 — 1 — Reserved
+8 — 1 — EOF offset of last delimiter in last physical record
+9 — 1 — LRL (logical record length)
+10 — 2 — NRN (next record no. — open sets=X'0000" — Isb/msb)
+12 — 2 — ERN (ending record no. — last in file — 1sb/msb)
+14 — 18 — Reserved

NRN Next Record Number defines which record is to be read or
written by the next system call for READ or WRITE. Itis
automatically incremented by one after each system call. In order to
process random files, use the POSN call to direct TRSDOS to the
record you wish to transfer next.

ERN Ending Record Number is the last record number currently
in the file. It is put into the directory at CLOSE time, so if it is
expected to be correct, the user must close his files after adding
records to a file. This value may also be used to position to end of
file so that new records may be added to the end of the file. To
position to the end of file use a call to POSN with a record number
of ERN+1. POSN is described later.

6-6

TRSDOS Technical Information

Physical and Logical Records in TRSDOS

A physical record is defined as one sector of disk. One sector of disk
contains 256 user data bytes. The artificial term “granule” is
defined to be 5 sectors of disk space. There are 2 granules on each
of the 35 tracks on the disk. A granule is the least amount of space
allocated by TRSDOS. For programming purposes, the physical
records in a file are numbered from O to N. The largest record
number (N) in a file will then be five times the number of granules
allocated minus one ((5*G)—1). All TRSDOS granule allocations

are made as needed at the time of write, not when the file is

created.
Bytes Sectors Granules Tracks Disk
256 1 - — -
1280 5 1 - —
2560 10 2 1 —
89600 350 70 35 1

Disk Space Table : For each 5-1/4” Disk Drive

A logical record is defined by the user of TRSDOS. It may be
anywhere from 1 to 255 bytes in length. Once a file is opened with
a specific LRL (Logical Record Length), the length is fixed until
the file is closed. To change a file’s LRL, you must CLOSE it and
re-OPEN it with the new LRL.

Each opening of the file sets a single, fixed record-length.
TRSDOS will ““block” logical records into (or from) one physical
record for maximum space utilization on the disk.

Blocking is putting more than one logical record into one physical
record. For instance, four 64-byte logical records will fit into one
256-byte physical record. A logical record may be broken into two
parts by TRSDOS in order to fill the last portion of one physical
record entirely before beginning to use the next physical record
(i.e. records are spanned). This occurs when the physical record
length is not an even multiple of the logical record length.

If the user wishes to do his own blocking, he may specify a logical
record length of O bytes at the time of INIT/OPEN and must himself
manage the contents of the physical record buffer area of 256 bytes.
TRSDOS will not move a logical record for the user if LRL=0; in
this particular case it will only read/write the physical record
to/from the buffer.

6-7

TRSDOS Technical Information

Fundamental TRSDOS I/O Calls

There are eight fundamental TRSDOS routines involved in handling
file I/O. These are:

INIT Creates a new file in the directory and opens it.
.. No granule allocation is done.
OPEN Opens an existing disk file.

POSN Position for reading/writing a particular logical
record.

READ Reads one logical record into RAM from disk or
from the physical buffer.

WRITE Writes one logical record from RAM onto disk or
into the physical buffer.

VERF Writes then verifies by reading back and comparing
to the original data written from RAM. Only
pertains to LRL=0 physical records.

CLOSE Closes an open file.

KILL Closes a file and erases it from the directory.

The detailed calling sequences and discussions for each of these routines
follow. Note that all of these system calls use register F and do not
restore its value before return. In order to properly apply this data,
you should read through all of these descriptions and clear up all of

the points that are not obvious to you by using other reference
materials. If you are successful in doing this you will find that
TRSDOS is a workable tool for your programming ideas. The jump
vectors supplied here and the descriptions especially pertain to
TRSDOS Version 2.1 only. Future releases of TRSDOS may alter
some of these descriptions or addresses.

INIT (jump vector = X’4420’)
INIT is provided as an entry point to TRSDOS which will
create a new file entry in the directory and open the DCB
for this file. INIT scans the directory for the filespec name
given in the DCB. If the filespec name is found, INIT
simply opens the file for use. If the name is not found,
a new file is created with the filespec name.

entry: HL=>BUFFER (see beginning of this section for notation)
DE=>DCB
B=LRL
CALL 4420H
exit: Z=0K
C carry flag is ON if a new file was created
A=TRSDOS error code. (Error codes listed at end of
this chapter)

6-8

TRSDOS Technical Information

OPEN (jump vector = X’4424°)

OPEN provides a way to open the DCB of a file which
already exists in the directory. The DCB must contain
the filespec of the file to be opened before entry to OPEN.

entry: HL=> BUFFER

exit:

DE=> DCB

B=LRL

CALL 4424H

Z=0K

Z=0 if file does not exist.
A=TRSDOS error code.

POSN (jump vector = X°4442’)

POSN positions a file to read or write a randomly selected
logical record. Since it deals with logical records, the
proper computation is done to locate which physical
record(s) contain the data. Following a POSN with a
READ or WRITE will transfer the record to/from RAM.

Note that positioning to logical record zero sets the file
to read the first logical record in the file. To position to
end of file in order to add new records onto the end, use
the record number ERN+1 (see page 2).

entry: DE=> DCB (must have been opened previously)

BC= Logical record number to position for.
CALL 4442H

exit: Z=0K

A=TRSDOS error code.

READ (jump vector = X’4436°)
If LRL>0, READ transfers the logical record whose number is

in the DCB as NRN (see page 2) into the RAM area
addressed as UREC for the length LRL as defined at open
time. The record comes from the RAM BUFFER defined
at open time. If TRSDOS must read a new physical record
to satisfy the request, it will do so. ““‘Spanned” logical
records will be re-assembled as necessary. READ auto-
matically increments NRN by one in the DCB after the
transfer is completed. INIT/OPEN sets NRN=X'0000" in
order to read the first record with the first READ.

If LRL=0, READ transfers one physical record into the RAM

BUFFER, which was defined at open time, from the disk
file. Registers HL are ignored. READ increments NRN
as above.

TRSDOS Technical Information

entry: HL=> UREC if LRL is not zero. Unused if LRL=0.
DE=> DCB
CALL 44364
exit: Z=0K
A=TRSDOS error code. (EOF=X"1C’" or X"1D")
(see errors 28,29 for EOF or NRF)

WRITE (jump vector = X’4439’)

IF LRL>0, WRITE transfers the one logical record from
the RAM area addressed as UREC for the length LRL as
defined at open time. The record goes into the RAM
BUFFER which was defined at open time. If TRSDOS
must write a physical record in order to satisfy the
request, it will do so. ““‘Spanning” will be handled by
TRSDOS as necessary. At INIT/OPEN time the DCB
value of NRN is set to X'0000’ so that the first record will
be written. After each logical record is transferred, the
NRN value in the DCB will be incremented by one.

IF LRL=0, WRITE transfers one physical record from the RAM
BUFFER into the disk file using the NRN in the DCB.
BUFFER IS DEFINED at INIT/OPEN time only. The DCB
value NRN is updated as above, after the WRITE.

entry: HL=> UREC if LRL is not zero. Unused if LRL=0
DE=> DCB
CALL 4439H

exit: Z=0K
A=TRSDOS error code.

VEREF (jump vector = X’443C’)
The only difference between VERF and WRITE is that
VEREF writes one physical record to disk and then reads
it back into a special TRSDOS RAM area not defined by
the user. This special area and the original write buffer

are then compared byte by byte to assure that the record
was successfully written.

entry: HL= > Same as WRITE above.
DE=> DCB
CALL 443CH

exit: Z=0K
A=TRSDOS error code.

6-10

TRSDOS Technical Information

CLOSE (jump vector = X’4428’)

CLOSE closes a file from the last processing done. It is
very important to do a CLOSE on every file opened before
the program ends. If you do not close a file, the directory
entry for this file is incorrect if any new records have been
written into the file. Other cases are not given here, but it is
very important to TRSDOS that all of the “housekeeping”
is complete for file management.

entry: DE=> DCB

exit:

CALL 4428H
Z=0K
A=TRSDOS error code.

KILL (jump vector = X’442C’)

KILL deletes the directory entry for an open file and then
completes the close on the DCB. The disk space released
by the old file is now re-useable for other purposes.
Otherwise KILL is the same as CLOSE.

entry: DE=> DCB

CALL 442CH

exit: Z=0K

A=TRSDOS error code.

Supplementary Information

Other routines and addresses which may be of interest are defined
here. Pay particular attention to the error routine. It does NOT
perform error recovery. It displays TRSDOS error messages on the
video display.

(D
(2)

3

CALL 402DH — Normal return to TRSDOS at program end.

X’'4318’: address of the 64-byte buffer that contains the
last TRSDOS command that was entered. Useful
to decode special parameters entered when
program was executed (run).

If HL => 8&-byte buffer, then:
CALL 446DH returns the time of day into the 8 bytes
in the ASCII format — HH:MM:SS
CALL 4470H returns the date into the 8 bytes in the
ASCII format — MM/DD/YY

Binary forms of the time and date are located in TRSDOS
RAM at these locations:
X’4040' clock — real time clock heartbeat count. 25ms.
X’4041’ time — binary — 3 bytes — sec,min,hrs
X'4044’ date — binary — 3 bytes — yr, day, mon

6-11

TRSDOS Technical Information

o e R]

(4) Printing TRSDOS error codes on the video display.

CALL 4420H Example of system I/O call. Any call
is ok. Zero flag not set means an error
has occurred during the I/O attempt.

JR Z,0KGO Ignore error message display if no
error.

OR 80H Optional for detailed error message.
Register A already contains proper
code for a single line message display.

CALL 4409H Display error message on video screen.

Optional user error recovery code goes here

OKGO continue with program here - - -

TRSDOS Error Codes — Returned in Register A

decimal prob. error
number causes™ description
00 — No error
01 MD Parity error during header read
02 D Seek error during read
03 XK Lost data during read
04 MD Parity error during read
0S FMD Data record not found during read
06 P Attempted to read system data record
07 P Attempted to read system data record
08 UP Device not available
09 MD Parity error during header write
10 D Seek error during write
11 XC Lost data during write
12 MD Parity error during write
13 FMD Data record not found during write
14 XD Write fault on disk drive
15 UDX Write protected diskette
16 PS Illegal logical file number (dcb bad)
17 MPDS Directory read error
18 MPDS Directory write error
19 Up Illegal file name (dcb bad)
20 MPDS GAT read error (Granule Allocation Table)
21 MPDS GAT write error
22 MPDS HIT read error (Hash Index Table)
23 MPDS HIT write error
24 UpP File not in directory
25 UpP File access denied (protection violation)

*See Explanation, next page.
S T R R O E Bl

6-12

TRSDOS Technical Information

decimal prob. error

number causes description
26 UP Directory space full (48 files max)
27 UP Disk space full (70 granules max)
28 P EOF encountered (End Of File)
29 P NRF (No Record Found) out of file range
30 UP Full directory. File can’t be extended.
31 UP Program not found
32 UP Illegal drive number specified
33 UP No device space available for new device
34 MPUS Load file format error. Not a program.
35 XCS Memory fault
36 PUXC Attempted to load ROM memory
37 P Illegal access attempted to protected file
38 UP File has not been opened
39-62 Not defined yet. Reserved
63 P Unknown error code

Explanation of probable cause cedes: (column 2)

C =TRS80 CPU fault
D = Disk drive fault

P = User program error
S = TRSDOS fault. Reboot

F = Diskette not formatted U = User procedural error
M = Diskette media fault X = Expansion Interface fault

6-13

DISK
BASIC

Contents of This Section

Introduction
Enhancementsto LEVELII ...
Disk Features

File Manipulation

File Access
Sequential Access Techniques
Random Access Techniques . .
DISK BASIC Error Messages .

Section 7 - Page 1

nmo>»CoH2er

DISK BASIC

Introduction

DISK BASIC is a set of enhancements to LEVEL II BASIC, plus
features to allow disk input/output of BASIC programs and data.
It is a memory image file stored on the TRSDOS software diskette
with the name BASIC and extension /CMD.

When DISK BASIC is loaded into RAM, it automatically takes
control of the LEVEL II BASIC ROM program, using almost all of
its routines and adding others. This is possible because LEVEL II
was designed with upward compatibility built-in. (You can see this

by examining the memory map for LEVEL II, in particular, hex
addresses 37DE-37EC.)

When loaded, DISK BASIC occupies approximately 5.8K bytes of
RAM, beginning at hex address 5200 (decimal 20992).

To load and execute DISK BASIC, first power-up the Disk Operating
System (see System Operation), so that

DOs READY
is displayed. Now type:

BRSIC NS

TRSDOS will load BASIC into RAM, and BASIC will begin the
“initialization dialog”. This is a series of questions and answers
which tell BASIC how to organize memory according to your needs.

The first question is,

HOW MANY FILES?

You repond with the maximum number of disk files that will be
open (in use) at any one time — any number from zero to 15.

(Every program or data set you store on the disk is referred to as a
“file”. In fact, everything on the disk, including system software,
exists in the form of files.)

The number you enter tells BASIC how many disk I/O buffers and
data control blocks to create (for definitions, see Glossary). If n files
are to be in use at once, then n buffers will be required. Each buffer
will take 290 bytes from your available RAM (256 for the buffer plus

34 for a data control block [DCB]), so don’t enter an unnecessarily
large number.

If you simply press [RE4:] without entering a number, BASIC
will use a default value of 3; so you’ll be able to have 3 file buffers
in use at once.

7-2

DISK BASIC

Note: DISK BASIC automatically creates a buffer for loading, saving
and merging BASIC programs. This buffer exists in RAM below

any data file buffers you may request. It is always available for
program 1/O, regardless of how you answer the FILES? question.

Suppose you’re going to be using 2 files: 1 for inputting data,

1 for outputting data. Then you might answer 2 to the FILES?
question. However, if only 1 of these files will be open at once, then
you really only need to reserve 1 file buffer/control block.

Examples:

HOW MANY FILES?

causes BASIC to set aside zero buffers for I/O to disk files. You
won’t be able to open files, but you will have the maximum amount
of RAM for use by your program.

HOW MANY FILES? 45 EYUER

tells BASIC to create 15 I/O buffers and control blocks; you will
then be able to have 15 files open at once; however, this will reduce
your available memory by 15%290 = 4350 bytes.

HOW MANY FILES? [SARNHA]

tells BASIC to use a default of 3 for the number of files to be in use
at once.

After you answer the FILES question, BASIC will ask:
MEMORY SIZE?

You respond with the highest memory address (in decimal form) you
want BASIC to use for storing and executing your BASIC programs.
Addresses above the number you specify will then be protected

from use by BASIC.

Here’s why you might want to protect memory:

You can load machine-language programs or routines into high
memory, and then access these routines from DISK BASIC via
specially defined USRn functions, or via the SYSTEM command.
These machine language routines may be loaded from tape using the
SYSTEM command, LOADed in the DOS READY mode, or placed
in memory one byte at a time using either DEBUG or BASIC POKE
commands. If you do not reserve memory, such routines will be
destroyed during execution of BASIC statements.

7-3

DISK BASIC

Example:
MEMORY SIZE™ 3 ENTER
causes BASIC to protect addresses above 32000. If you have 16K

of RAM, this means that you’ll have 32767-32000= 767 bytes
protected for storing your machine language routines.

If you don’t want to reserve any memory, just press [ANRESS
without typing a number.

MEMORY SIZE? VRS

You will then have the maximum amount of RAM available for use
by BASIC.

Refer to the Memory Map for decimal addresses of the various
TRS-80 memory configurations (16K, 32K, 48K).

After you answer the MEMORY SIZE question,

RALIC SHACK DISK BRSIC VERSION 1.1
READY
>

-

will be displayed. You are now operating under DISK BASIC.

To exit BASIC and return to the DOS READY mode, type:

MU ENTER

This results in a normal return to DOS — without re-initialization of
the system. If you have a BASIC program in RAM, it will be lost, so
be sure to save it on disk or tape before using CMD*'S".

7-4

DISK BASIC

Enhancements to LEVEL II1 BASIC

DISK BASIC adds many features to LEVEL II which are not disk-
related. They are listed below along with abbreviated descriptions.
Detailed descriptions follow in alphabetical order.

&H Hexadecimal-constant prefix
&0 Octal-constant prefix
CMD""D"” Enable and load the real-time debugging program
CMD""R" Enable interrupts (start real-time clock)
CMD"'S"” Normal return to TRSDOS (jump to EXIT routine)
CMD"T"” Disable interrupts (turn off real-time clock)
DEF FN Define an implicit BASIC-statement function
DEF USR Define the entry point for an external
machine-language routine
INSTR Instring function; find substring in target string
LINE INPUT Input a line from keyboard
MIDS§= Replace portion of target string (used on left
of equals sign)
TIMES Get time and date from real-time clock
USR#n Call external routine (#=0,1,2,....,9)

Cassette Operations

Before any BASIC cassette input or output operation, you must
disable interrupts with the CMD"'T’"* command. This is because such
cassette operations are timing-sensitive and cannot work if they are
being interrupted every 25 milliseconds. When the cassette operation
is complete, you can re-enable interrupts by executing the statement
CMD"R".

CLOAD allows no filename in DISK BASIC. Therefore you cannot
use such a filename to sort through several tape files. CLOAD will
always load the first file encountered on the tape. CSAVE, however,
still requires the filename. This way, programs CSAVEd under
DISK BASIC can be loaded and sorted through via the LEVEL II
CLOAD*filename” command.

CLOAD? (CLOAD-verify), used in LEVEL II to compare a BASIC
program in RAM with one on tape, will not work with programs
saved on tape under LEVEL II. It will work with programs saved
under DISK BASIC.

DISK BASIC

Error Messages

When an error occurs, DISK BASIC “spells out” the full error
message, not just the abbreviation. This saves you from having
to look it up.

Example:

S EYE ENTER
DISK BASIC responds with:

T OF STRING SPRCE

Note: The ERROR function, used to simulate error conditions, will
work only with non-disk error codes.

&H and &O (hex and octal constants)

Often it is convenient to use hex (base 16) or octal (base &)
constants rather than their decimal counterparts. For example,
memory addresses and byte values are easier to manipulate in hex
form. &H and &O let you introduce such constants into your
program.

&H and &O are used as prefixes for the numerals that immediately
follow them:

&Hdddd
where dddd is a 1 to 4 digit sequence composed of
hexadecimal numerals 0,1,...9,A,B,... F.
&Oddddd
where ddddd is a sequence of octal numerals 0,1,...,7.

and &0ddddd< =177777 decimal.
Note: The O can be omitted from the
prefix &0. Therefore &Oddddd=&ddddd.

The constants always represent signed integers.

Therefore any hex number greater than &H7FFF, or any octal
number greater than &077777, will be interpreted as a negative
quantity. The following table illustrates this:

Octal Hex Decimal
&l &H1 1

&2 &H?2 2
&77777 &H7FFF 32767
&100000 &H&000 -32768
&100001 &H8001 -32767
&100002 &HS8002 -32766
&177776 &HFFFE -2
&177777 &HFFFF -1

7-6

DISK BASIC

Hex and octal constants cannot be typed in as responses to an
INPUT prompt or be contained in a DATA statement. Often the
hex or octal constant must be enclosed in parentheses to prevent a
syntax error from occurring.

Examples:
PRINT &HS26E, 0516608

prints the decimal equivalent of the two constants (both equal
20992).

POKE &HZCEG, 42

puts decimal 42 (ASCII code for an asterisk) into video memory
address hex 3CO00.

168 FOR I=(&HZCBE> TO (&HZFFF) STEP (&H4@)
208 1F A=(&HZVESY THEN A=A+1

IgB POKE AL (XX AND &HFF)

Masks the most significant byte of X% and POKEs the result into
location A%.

CMD*“D” (execute DEBUG program)

CMDI ID 1

Executing this statement causes the TRSDOS debugging program to
load and execute. (See TRSDOS Commands, DEBUG.) Your BASIC
program is unaffected, since DEBUG loads below DISK BASIC.

To return to BASIC without re-initialization, type

W ENTER

The READY message will appear and you can continue in BASIC.

Once CMD’D’" has been executed, DEBUG will take over whenever
you press the BREAK key. Pressing G will return you to
BASIC again. Type CONT to continue any program that was
executing when you typed BREAK.

To return from DEBUG to the BASIC initialization sequence, type
G5200 A} - You will lose any BASIC program text or
variable values.

DISK BASIC

Examples:
i - FROGRAM: DEBUG
146 ¢ EXAMPLE OF EXECUTION WITH DEBUG WITHIN A PROGRRM
128 7

138 CL%: PRINT TRECLS): "DEBUG EXAMFLE": PRINT

146 PRINT"ENTERING DEBUG"

158 FOR I=1 TO S88:. HWEXT I “DELAY A WHILE

ied ¢

178 7 sekw ENTER DEBUGGING PACKAGE

isd 7

198 CHDODe

208 7

248 7 4w RETURM HERE WHEN "G" EMTER TYFED IN DEBUG ###
2268 7

236 CLS: PRINT: PRINT "¥OU HAYE RETURNED FROM DEBUG"
248 EHND

—

DEBUG EXAMPLE

EMTERING DEBUG

7-8

DISK BASIC

42 -Z--—-N-
ST 43 5
44 22
B 63 55
SZAHLPNC
R R

[t
S
(=

JU %

oo e
oorn I
Al el

»
Y

J¥ s s S N
[I <
:"l

%]
SN

I]
T
e s

H

A

o8
T ™ L
m oo m
T4
T)

TH LD T
iy A

Won

£ M
T R
Tt

.,.
XA
[ON)
-
5

)

)
P

R o B
y e

mut

i
-
ot
focs
-
5

Ty CTT b 0%

IO O B WAL

T
!

,.
Py
)
i
i

b

L S AT

1

oy o)

-
X
=
ot
fu

U] o en
1

o,
o
=,
2!

E]
A b S e

o opg
)

oy !:——7
L g i

5N
Lot

S

VL Led o) b
_x

oo
T L e o
ey
oS T oo

-
Dy

o L) LD

i
SOURRN W
Wt T T pa s

S ERX e da bt
g . R

[

"t

i
D]
v
T O [T
D]
-
5
-
i

LI

it
=
Lo
iad [T
i éﬁ'zlr” e 43
B T P 0

Bd Lad T
1

GO 5 ATy

TR Ll 0 O Led Lo
[an]

PP T R Ty

£
el

Ty Led Dot PR P
frs)

5
[
eI e 05T o 05 07

Ll I OCTE T 8
S0 T e

[xx
A T b

Foin

T e bed T a1

(RO R el

At
e

R)
[=

D)
L
4 b
1,

r\'"leU HHI,.}E F’ETUF'”E [fl FF-DM {:'EEH_“}
READY

7-9

DISK BASIC

CMD*R?” (start clock [enable interrupts])

CMD*R”

Execute this command immediately after completion of a cassette
input/output operation to re-start the real-time clock. See CMD""T"".

CMD*‘S” (return to TRSDOS)

| cmp“s”

Execute this command to initiate a normal return to the Operating
System command mode. This will not re-initialize the system, but
merely get you out of BASIC.

Be sure to save any BASIC program on disk or tape before using
CMD"'S", as your resident BASIC program will be lost.

CMD*“T” (stop clock [disable interrupts])

CMD”TH

You must execute this command immediately before any BASIC
tape input/output operation. Such operations are timing sensitive

and cannot allow the interrupt-driven tasks (such as the real-time
clock, TRACE, and CLOCK-display) to “‘steal” time.

Here are the commands which must be preceded by execution of

CMDIIT” :
CLOAD CLOAD?
INPUT #-1 CSAVE
INPUT#-2 PRINT #-1
SYSTEM PRINT #-2

After completion of these operations, you can execute a CMD"'R"
to re-enable interrupts.

Example:
16 OPEH"I". 1, "TEST/BRS"

28-CHDUT": INPUTH#L R.BEL C
@ CHpUR®

7-10

DISK BASIC

Note: After CMD”D”, you can use CMD"'T" to prevent BASIC from
transferring control to the DEBUG program when BREAK is pressed.

DEF FN (define function)

DEF FNvarl(var2{,var... 1) =exp

where varl will be the name of the function, and is any
valid LEVEL II variable name
var2 and subsequent var-items are
used in defining what the function does
exp is an expression usually involving the variable(s)
passed on the left of the equals sign

This statement lets you create your own implicit functions. That
is, you only have to call it by name and the implicit function you
defined will automatically be performed. Once a function has been
defined with the DEF FN statement, you can call it simply by
referencing the function name prefixed by FN. You can use it
exactly as you’d use one of the intrinsic functions, e.g., SIN, ABS,
STRINGS.

The type of variable used to name the function determines what type
of value the function will return. For example, if the function name
has the single-precision attribute, then that function will return a
single-precision value — regardless of the precision of the arguments.

Examples:
DEFFHA$CTITLES. GRAPHICSE »=STRING$CLENCTITLES), GRAFHICSH)

The function AS will require two arguments — one integer, one
string; and it will return a string value.

DEFFNRC! (Ha=1/"CR*H>

The function RC! requires one argument, and returns a single-
precision value, regardless of the precision of the argument.

The particular variable names you use as arguments in the DEF FN
statement are not assigned to the function; when you call the
function later, any valid variable name of the same type can be
used. Furthermore, using a variable as an argument in a DEF FN
statement has no effect on the value of that variable.

The function must be defined with at least one argument — even if
this argument is not actually used to pass a value to the function.
For example:

DEF FHRCA>=RND{B)

DISK BASIC

Examples:

18 DEFFHMLT CH. Ba=A+R
28 ITHPUT "ENTER ARGUMENTSY: H. Y
I8 PRINT "PRODUCT IS"; FHMLTOS Y2

Notice that FNMLT is defined with arguments A,B, but that when
the function is called in line 30, variables X and Y are used. Any
two valid variable names can be used to pass values to the function.

DEF FHRERCA Br=R+IHTCB#RNDIRYY Returns a random
number between
A and B.

DEF FNLE$FCRF)=LEFTHIAE, 50 Returns first 8
characters of string
argument

DEF FHA#CR#. B#)=R¥-B#)+ R#-EH#> Returns double-

precision value of “the
square of the

difference”
186 - FROGRAM: STRING
148 7 EXAMFLE OF A STRING DEFFN FUNCTION
iza 7
1Z6 7 sbsssbs FUNCTION TO CONCATEHATE STRINGE ettt
135 -

148 DEF FNADDS (RS, B$) = RE + " " + B$

158 CLS: PRINT TAB(15); "STRING DEFFN EXAMPLE"
168 FRINT: F$="": INFUT “ENTER FIRST MAME"; F%
165 IF F4="" THEN END

178 INFUT "ENTER LRST NAME" L%

13

136 ¢ skt ADD FE TO LS WITH 1 BLANK TN BETHEEN #okbttn
218 2% = FNRDDS (F%. L$)

2 PRINT TRECED: "FULL NAME: i 2%

238 GO0TO 1eE

STRING DEFFH EXAMFLE

ENTER FIRST HAME? |
ENTER LAST HAMES
FULL NAME: JOHH DOE

7-12

DISK BASIC

iae -

1ia
1z8
1z6
135
148
156

218
228
2
246
250
266
78
60

298 -
SRR

FROGEAM: MINHMRR
7 EXAMPLE OF DEFFM FERTURE

ek DEFTNE MIN AND MAY FUNCTIONS stttk
DEF FMMIN ¢f, B3
DEF FHHAX (R, B

CH+ B - ABS R - B S
fH + B + RES (R - BYy ¢

AN O]

o

T odsbderder RERD 15T WALLE - CALL IT THE MIH AND MAR sk
i M IS CURRENT MINIMUM YALLE
Me 1S CURRENT MAKIMUM WALUE

READ MN: MX = MM
¢ swtkdork GET NEWT WALUE AND FIND NEM MIMAMAY skt

RERD % IF Y = 29999 THEM 2 “Y=29900 MERNS RLL DONE
M = FHMIH (MM, V7 “GET HEM MINIMUM

M = FHMAR (M, WD “GET NEM MAXIMUM

GOTO 256

tbpbckpdt FREINT RESULTS sshdcdoopsk

FRINT "MIMIMUM YALUE =". MW
FRINT "MAXIMUM YALUE =", M

¢ wwwkek DATA FOLLOWS - LAST WALUE MUST BE 55853 e

DATA 1.2, 20 % 47, 5 3EZ B X4, & 7. 8 3, 957, 93999

MINIMOM YALUE
MAXTHUM YALLE
READY

0 JENTER|

MINIMUM YHLUE
MESIHUE YRLUE 3ET
RERDY

HoH
1ol
iy
=Y

ENTER]

ERE

fon

7-13

DISK BASIC

DEFUSR
(define entry address for USR routine)

DEFUSRn=nmexp

where n equals one of the digits 0,1,...,9;
if n is omitted, O is assumed
nmexp specifies the entry addresstoa | =,
machine-language routine. =TTy

This statement lets you define the entry points for up to 10 machine-
language routines. (In LEVEL II, where only one USR routine is
available, the entry point address is POKEd into RAM.)

Example:
188 DEFUSRZ=&H7DOE

Assigns the entry point 7D00 hex, 32000 decimal, to the USR3 call.
When your program calls USR3, control will branch to your sub-
routine beginning at hex 7D00.

Here are three ways to get a machine language program into RAM so
that it can be accessed via a USR# call:

1) Use the TRS-80 Editor Assembler, Radio Shack Catalog
Number 26-2002, to convert the source code into an object
file on tape; then load the tape under the SYSTEM
command (use MEMORY SIZE to protect the code from
destruction by BASIC).

2) Use the TRSDOS DEBUG program to type in the machine-
code routine (then DUMP it to disk for safe-keeping);
call DISK BASIC and answer MEMORY SIZE so as to
protect the routine.

3) Have your DISK BASIC routine POKE the routine (decimal
values for each byte) into high RAM. MEMORY SIZE
should be set during initialization to protect the area you
will POKE into.

See USRn.

7-14

DISK BASIC

INSTR (string search function)

INSTR([n,] expl$,exp2$)

where n specifies a position in exp1$ where the
search is to begin; if n is not supplied,
1 is assumed. (Position 1 is defined as
the first character in the string.)
expld is the string to be searched
exp2$ is the substring you want to search for

This function lets you search through a string to see if it contains
another string. If it does, INSTR returns the starting position of the
substring in the target string; otherwise zero is returned. Note that
the entire substring must be contained in the search string, or zero

is returned. Also note that INSTR only finds the first occurrence of
a substring, starting at the position you specify.

Examples (let AS=""ABCDEFG"):

Expression Result

INSTR(AS,“BCD")
INSTR(AS,”12")
INSTR(AS$,”ABCDEFGH")
INSTR(3,71232123",12")

wn O O

See the EDIT program under MID$= for a sample use of INSTR.

7-15

DISK BASIC

LINE INPUT (input a line from keyboard)

LINE INPUT[“prompt"] yar$

where prompt is a prompting message

varg is the name that will be assigned to the line you
type in

LINE INPUT (or LINEINPUT — the space is optional) is similar to
INPUT, except:

® When the statement is executed, and the Computer is waiting for
keyboard input, no question mark is displayed

Each LINE INPUT statement can assign a value to just one variable
Commas and quotes will be accepted as part of the string input
Leading blanks are not ignored — they become part of var$

The only way to terminate the string input is to press

LINE INPUT is a convenient way to input string data without having
to worry about accidental entry of delimiters — because only the
key serves as a delimiter. If you want anyone to be able to
input information to a program without special instructions, use
LINE INPUT and then analyze the resultant string.

Some situations require that you input commas, quotes and leading
blanks as part of the data. LINE INPUT serves well in such cases.

Examples:

LINE INPUT A$
Input A$ without displaying any prompt.

LINE INPUT“LAST NAME. FIRST HAME?"; N$
Displays a prompt message and inputs data. Commas will not termi-
nate the input string.

Try the following program to get the idea of LINE INPUT.

168 - PROGRAM: LMINPUT
118 * EXAMFLE OF LINEINPUT STATEMENT
128 ¢

1=6 CLERR Z0@: CLS
146 PRINT THEC1S); “LINE INFUT STATEMENT": PRINT
156 FRINT: PRINT "#&d ENTER TEXT ek

151

152 7 #d GET STRING, THEM PRINT IT s
15z 7

155 R$="" 7SET A% TO HULL STRING

7-16

DISK BASIC

168 LINEINFUT "==3 "; Af

185 IF Af="" THEN END “IF STILL HULL STRING. =STOF!
178 PRINT R$

186 GOTO 4155

LINE IHMPUT STRTEMENT

sk EMTER TERT #o

EXAMPLE TEXT

THIS TEXT HAS EMBEDDED LINE FEEDS AND TRES

IN IT. LINEINFUT ALSO ALLOMS DELIMITER ¢ o
== EXNER

READY

5

MID$= (replace portion of string)

MIDS$(var$ nl[,n2])=exp$

where pgr$ names the string to be changed
nl specifies the starting position for the
replacement
n2 specifies how many characters are to be
replaced; if n2 is omitted, LEN(exp$) or
LEN(var$)-ni+1 is used, whichever is
smaller.

This statement lets you replace any part of a string with a specified
substring, giving you a powerful string-editing capability.

Note that the length of the target string (var$) is never changed by
the MIDS$= statement. If the replacement string, exp$, is too long
to fit in the specified portion of var$, then the extra characters at

the right of exp$ are ignored.

DISK BASIC

However, if you specify the number of characters to be replaced,
and this number is larger than the replacement string, then the
length of the replacement string overrides the length you specified.

A$=""ABCDEFG" at the beginning of each example below:

Ex. # Expression Resultant AS$
1 MIDS$(AS$,3,4)="12345" AB1234G
2 MID§(AS,1,2)="" ABCDEFG
3 MIDS(AS$,5)="12345" ABCD123
4 MIDS$(AS,5)="01" ABCDO1G
5 MIDS$(AS$,1,3)="***" ***DEFG

In example 2, the specified replacement length exceeds the length
of the replacement string (which is zero); therefore the replacement-
string length is used. In effect, no characters are replaced.

Sample program: EDIT

This program accepts an initial string, asks for a replacement position
and a replacement string. Then it performs the MID$= replacement
and prints the new string. Type in a position equal to zero to stop
the program.

1688 PROGERM: EDIT

1168 7 ESAMPLE OF INSTR FUNCTION FOR TEXT ERITTING
115 -

128 CLEAR S@@: CLS

1Z8 PRINT TRECASY: " STRING-FUNMCTION EDITORY

135 7

1468 7 bbbt GET IMITIAL TERT detotoso

145 -

156 PRINT: PRINT "EHTER INITIAL TEXT STRING®
1ed S#="": LIHE IMPUT S$: IF S$="" THEH END

165 . .
178 7 sekstssk GET TARGET & REPLACEMENT STRINGS skt
175 -

156 TE="": PRINT: LINE INPUT" THEGET STREING " T#

185 IF T$="" THEN END

198 LINE IHPUT "REFLACEMENT STRIMG "; R$

IF LEMCTH22LENCREITHEN PRINTYCANST CHANGE STRING LENGTH":
GOTO 198

7 odobseedetok MAKE REPLACEMENTCS) RHD FRINT MEW STRING st
I=1 “VARIAELE I POSITIONS TO BEGINNING FOINT OF SERRCH
I=INSTRCI. S$. T$r: IF I=8 THEN 458 “I=0 IF NOT FOURD
MIDECSE, To=R$ “MAKE REFLACEMENT

PRINT "POSITION - "; I: PRINT 5%

I=T+LENCE$Y: GOTO 228 “ADVAMCE POSITION

[N
LL
h

[I OO O B K I i)
O X 5 T T

A R LS N LV LN

poy

7-18

DISK BASIC

STRING-FUMCTION ELITOR

ENTER INITIAL TEST STRING

TARGET STRING
REFLACEMENT STRING
FOSITION —
CHRHGE "DISK® TO "DISKY EACH TIME IT QCCURS. . (DISC=>DISKD
FOSITION - 4%
CHHHGE "DISE" TO "DISK® ERCH TIME IT OCCURS | <DISK=>DISK:

ENTER INITIAL TEXT STRING

RERDY

TIMES (get value of Real-Time Clock)

TIMES

TIMES is a function with no arguments — when executed, it returns
a string-value composed of the date and time currently stored in the
Real-Time Clock memory area. The string is always 17 characters
long and has the following format:

MM/DD/YYBHH:MM:SS (month/day/year hr:min:sec)
The hour appears in 24-hour form, e.g., 1:30 PM appears as 13:30.

To set the time and date, get into the DOS READY mode and use
the TRSDOS commands, TIME and DATE, as follows (assume it’s

3:30 PM on January 1, 1979):

TIME 15:36: 68
DHTE @1 81/79

Or, you can set the time and date under DISK BASIC, by POKEing

the time and date values into the appropriate addresses (see
CLOCK, TRSDOS Library Commands).

TIMES can be printed or used internally by your program in dedicated
applications.

7-19

DISK BASIC

Examples:

16@E 1F LEFT$(TIMES, 15)="G7/84/79 26:00"THEN 2666
1848 GOTO 108d

2@eE REM. . IT<S SPM ON JULY 4TH. 1879

Z@1@ REM. .. START FIREWORKS DISFLAY

The following program, CLOCK, will display the time and date until
you press the @-key.

1aa - PROGRAM: CLOCKE

118 7 EXAMFLE OF TIME®

1z8 7

130 CLS: PRINT CHR$ ¢23» “GET INTO 22 CHARACTER MODE
148 ¢

156 ¢ dsckkkdaok FRINT TIME AND DRTE skt

18 -

176 PRINT @ 264, "THE TRS-28 TIME IS

186 FRINT @ 458, “"DRTE: "; LEFT$ <TIME# S

196 PRINT @ 586, "TIME: ": RIGHT$ (TIME$, =X

2ee -

248 ¢ dseroes STOP IF "@" KEY IS DEPRESSED #dsskdsk
228 7

2@ A$=IMKEY$: IF A$ = "@" THEN END ELZE 12@

USRn (call to user’s external subroutine)

USR[n] (nmexp)

where n specifies one of ten available USR calls,
n=0,1,2,....,9. If n is omitted, zero is
assumed.
nmexp is in the range < -32768 +32767> and
is passed as an integer argument to the
routine

These functions (USRO through USRY) transfer control to machine-
language routines previously defined with DEFUSR# statements.

When a USR call is encountered in a statement, control goes to the
address specified in the DEFUSR#u statement. This address specifies
the entry point to your machine-language routine. A RET or JP
0A9A instruction in the routine returns control to the USR call in
your BASIC program.

7-20

DISK BASIC
L e —

Note: If you call a USR#n routine before defining the routine entry
point with DEFUSR#, an ILLEGAL FUNCTION CALL error will

occur.

You can pass one argument and retrieve one output value directly
via the USR argument; or you can pass and retrieve arguments
indirectly via POKE and PEEK statements.

Example:

18 DEFUSRL=&H7DEE
268 REM. .. MORE PROGRAM LIMES HERE
1608 R=USRLCED

The effect of this sequence is to:

1) Define USRI as a routine with an entry point at hex 7D00
(line 10)

2) Transfer control to the routine; the value X can be passed
to the routine if the routine makes the CALL described
below (line 100)

3) When the routine returns to BASIC, the variable A may
contain the value passed back from the routine (if your
routine makes the JUMP described below); otherwise A
will be assigned the value of X (line 100).

Passing arguments to and from USR routines

There are several ways to pass arguments back and forth between
your BASIC main program and your USR routines: the two major
ways are listed below.

1. POKE the argument(s) into fixed RAM locations. The
machine-language routine can then access these values and
place results in other RAM locations. When the routine
returns control to BASIC, your program can PEEK into
these addresses to pick up the “output” values. This is
the only way to pass two or more arguments back and
forth.

2. Pass one argument to the routine as the argument in the
USRn call, then use special ROM calls to access this
argument and return a value to BASIC. This method is
limited to sending one argument and returning one value
(both are integers).

7-21

DISK BASIC

ROM Calls
CALL OA7FH

Puts the USR argument into the HL register pair;

H contains msb, L contains Isb. This CALL should
be the first instruction in your USR routine.

JP OA9AH

Use this JUMP to return to BASIC; the integer in

HL becomes the output of the USR call. If you
don’t care about returning HL, then execute a
simple RETurn instruction instead of this JUMP.

Examples:

Listed below is an assembled machine-language routine that will
accept the argument from the USR call in BASIC, left-shift it one

position, and return the result to BASIC.

MACHINE CODE PROGREAM TO LEFT SHIFT
AN ARGUMENT SENT FROM BRSIC AND RETURN
THE RESULT BRCK TO BRSIC

7hEEH

EQUATES AND ENTRY POINTS

aales
aalie ¢ SHIFT FUNCTION
aaize
aaize
aEL4E
aaisa
aaled ;
Thaa aa1ve ORG
#8188
aaE198
gazes ;
BR?F GEz18 GETARG EoU
BHIA aaz2e PUTANS EQU
BEZZE
7hea COPFeR 6e248 SHIFT CALL
7DEE CE1S BE25E RL
7he3 Chi4 aazea RL
7DhE7 CIoRER eez?a IF
aezoE
rhae BE25e END

BR7FH s GET ARGUMENT FROM BRSIC
BRIAH i FETURN ANSHWER TO BRSIC
GETHRG s GET MUMBER FROM BRSIC

L FSHIFT L

H iSHIFT H - ANSHER IN HL
FUTANS RETURN TO BRSIC WY ANSHER
SHIFT

The following program includes the decimal code for the SHIFT
routine. The code is POKEd into RAM and then accessed as a USR
routine. RUN the program; to stop, enter a value of zero.

Note: The following two BASIC programs require that you reserve
memory addresses above 31999 for the USR Code. (Answer MEMORY

SIZE? with 31999.)

7-22

DISK BASIC

166 ¢ FROGRAM: SHIFT

118 < MACHIME LANGUARGE USER FUCTION TO LEFT SHIFT
124 -

138 7 sebkgsse MACHINE CODE AT P0OA HEX skdokdk

i4@ 7

1598 DEFUSRES = gH7DAA

ig@ -

176 ¢ swpeees POKE USER FROGRAM INTO MEMORY sttt
ize -

1926 FOR £ = 2260808 TO 3209 “7DEG HEY EQUALS 22668 DECIMAL
T FERD A

218 FOKE XA
228 NERT ¥

4@ 7 ek GET YALUE FROM USER et
250 ¢
B CLS: PRINT TREC1S): “USRS LEFT-SHIFT FUNCTION®
@ PRINT: INFUT"ENTER INTEGER VALUE"; Y
B IF Y=8 THEN END
o FRINT "LEFT SHIFTED YALUE = "; TRABLIZ2): USRSV
af GOTO 276
g s
B ¢ ket DATR 1S DEMICAL CODE FOR HEMX PROGRAM stk
@

[IN N (]
ooy gh

rd

Vaad el el Lot [l

4@ DATR 205, 127, 46, 263, 21, 263, 26, 195, 154, 46

[ENTER]

USRS LEFT-SHIFT FUNCTION

ENTER INTEGER “ALUE?
LEFT SHIFTED “WALUE =

ENTER INTEGER WALUE?
LEFT SHIFTED YALUE =

ENTER INTEGER “ALLE?
LEFT SHIFTED WRLUE =

ENTER IMTEGER “ALUE
RERDY

s

7-23

DISK BASIC

Listed below is an assembled program to white out the display (an
“inverse” CLEAR key!).

HaLEe
@aiid ; ZAP OUT SCREEN USRE FUHCTION
aaize
7hoa GE1=6 ORG 7DEEH
aeidaE
aeite ; EQURTES
aRled
ZCHE ael7e YWIDEOD EQU ICAEH P STRRT OF YIDEQ RAM
GEERF @aElse WHITE EQU GBFH ;ALL WHITE GRAPHICS BYTE
AEFF ae1%a COUNT EQU IFFH ; NUMBER OF BYTES TO MOVE
aazae ;
86216 ; PROGRAM CHRIN MOYES ¥7BFY INTO ALL OF VIDED RAM
aaz22e ;
Than 2A063C G238 ZARP LD HL. YIDED ; SOURE ADDRESS
7DAzZ ZeBF gaz46 LD CHL Y, WHITE s PUT OUT 4ST BYTE
7DES 110430 Be25E LD DE, YIDECO+L s DESTINATION ADDRESS
7DAS BAFFEE BREZCE LD BC, COUNT s NUMBER OF ITERATIONS
7DAB EDBA ae27a LDIR ;DO IT TO IT!!!
BAZEE
¢bab o HEzan RET SRETURN TO BRSIC
rhaa AazEa END ZRP

This routine can be POKEd into RAM and accessed as a USR
routine, as follows.

7-24

DISK BASIC

166 ¢

116

145 ¢

PROGRAM: USRL
© EXAMPLE OF R USER MACHINE LAMGUAGE FUNCTION
DEFRESS THE 787 KEY WHILE NUMBERS ARE FRINTING TO STOP

126

136
146 ¢

156
ied
i7a
ism
126
gz

124 -

dkckdokd POKE MACHINE PROGRAM THTO MEMOEY sdokdors

DEFUSEL = &
FOR X = 3208086 TO 3281% 7DO6 HEX EQUAL 22606 DECIMAL
REAL A
FOKE ¥. R
HEXT X

it
X
Y]
fun)
sl

#ekdokicik CLEAR SCEEEN & PRINT NUMBERS 1 THRU 106 skt

196 ¢

208
285
216
228

R =4

LR
238
24

258 7

LS
FRINT TRE{LS) "WHITE-OUT USER ROUTINE™: PRINT
FOR X =1 TO 18@
FPREINT
A¥ = IHKEY$: IF A% = "@" THEN END
NEXT ®

skttt JUMF TO WHITE-QUT SUBROUTINE #oketon

2e8

278
2506
259
St
]
26

sz b

¥ = USRL @)

FOR % = 1 T0 4@@@: NEXT X “DELAY LOOP

GOTO 280

“ swerwkak DATA 1S DEMICAL CODE FOR HEX FROGRAM #oomottor
DATA 23, & 68, 54, 255, 17, 1. 68, 1, 255, 3, 237, 176, 281

RUN the program. An equivalent BASIC white out routine takes
a long time by comparison!

7-25

DISK BASIC

Disk-Related Features

DISK BASIC provides a powerful set of commands, statements and
functions relating to disk I/O under TRSDOS. These fall into two
categories:

1. File manipulation: dealing with files as units, rather than
with the distinct records the files contain.

2. File access: preparing data files for I/O; reading and
writing to the files.

Commands discussed under “File Manipulation™:

KILL delete a program or data file
from the disk

LOAD load a BASIC program from disk

MERGE merge an ASCII-format BASIC

program on disk with one
currently in RAM
RUN*program™ load and execute a BASIC
program stored on disk
SAVE save the resident BASIC program
on disk

7-26

DISK BASIC

Statement and functions discussed under “File Access”:

Statements

OPEN Open a file for access (create the
file if necessary)

CLOSE Close access to the file

INPUT # Read from disk, sequential mode

LINE INPUT# Read a line of data, sequential
mode

PRINT# Write to disk, sequential mode

GET Read from disk, random access
mode

PUT Write to disk, random access
mode

FIELD Assign field sizes and names to
random access file buffer

LSET Place value in specified buffer

field, add blanks on the right
to fill field

RSET Place value in specified buffer
field, add blanks on the left
to fill field

Functions

CVD Restore double-precision number
to numeric form after GETting
from disk:

CVI Restore integer to numeric form
after GETting from disk

CVS Restore single-precision number
to numeric form after
GETting from disk

EOF Check to see if end of file
encountered during read

LOF Return number of last record in
file

MKD$ Convert double-precision number
to string so it can be PUT
on disk

MKI$ Convert integer to string so it can
be PUT on disk

MKSS$ Convert single-precision number
to string so it can be PUT
on disk

7-27

DISK BASIC

File Manipulation
KILL (delete a file from the disk)

KILL exp$

where epx$ defines a file specification for an existing file

This command works like the TRSDOS KILL command — see
TRSDOS Library Commands.

Example:
EILL"OLDFILE/BAS. PSWi
deletes the file specified from the first drive which contains it.

Do not KILL an open file, or you may destroy the contents of the
diskette. (First CLOSE the open file.)

LOAD (load BASIC program file from disk)

LOAD exp$ [,R]

where exp$ defines a filespec for a BASIC program file stored
on disk

R tells BASIC to RUN the program after it is
loaded

This command loads a BASIC program file into RAM; if the R
option is used, BASIC will proceed to RUN the program
automatically; otherwise, BASIC will return to the command
mode.

LOAD without the R option wipes out any resident BASIC program,
clears all variables, and closes all open files. LOAD with the R
option deletes the resident program and clears all variables, but does
not close the open files.

LOAD with the R option is equivalent to the command RUN exp$§ R.
Either of these commands can be used inside programs to allow
program chaining — one program calling another, etc.

If you attempt to LOAD a non-BASIC file, a DIRECT STATEMENT
IN FILE or LOAD FORMAT ERROR will occur.

7-28

DISK BASIC

Examples:

LOAD"PROG1/BAS:2" Clears resident BASIC program and
loads PROG1/BAS from drive 2;
returns to BASIC command mode.

10 REM...INSTRUCTIONS Example of chaining two programs
— the first may be used to give
instructions and then to load the

“working” part of the program
1000 LOADPROG2/BAS”", R (PROG2/BAS). Note that line

1000 is equivalent to:
1000 RUNPROG2/BAS"

MERGE
(merge disk program with resident program)

MERGE exp$

where exp$ defines a filespec for an ASCII-format BASIC
disk file, e.g., a program saved with the
A-option.

MERGE is similar to LOAD — except that the resident program is
not wiped out before the new program exp$ is loaded. Instead,
exp$ is merged into the resident program.

That is, program lines in exp$ will simply be inserted into the
resident program in sequential order. If line numbers in exp$
coincide with line numbers in the resident program, the resident lines
will be replaced by those from exp$.

PROGRAM IN DISK PROGRAM IN RAM MERGED PROGRAM IN RAM

10
20 20
30 30
40 — |40

PROGRAM LINE NUMBERS + 50 ———

60
70
90

7-29

DISK BASIC

MERGE provides a convenient means of putting modular programs
together. For example, an often-used set of BASIC subroutines can
be tacked onto a variety of programs with this command.

For example, suppose the following program is in RAM:

18 KREM. . . MRIN PROGRAM

268 GOSUB 1666

38 REM. .. MORE PROGRAM LINES HERE

999 END

1086 FEM. .. HEED TO ADD SUBROUTINES HERE
i@i1é REM. .. SO USE MERGE COMMAND

1826 PRINT"SUBROUTINE MNOT AVARILABLE" :RETURN

And suppose the following program is stored on disk in ASCII format:

18668 REM. . BEGINNING OF SUBROUTINE
1016 PRINT"EXECUTING SUBROUTINE. .. "
1626 REM. . . MORE PROGRAM LINES HERE
1166 RETURN

Assuming the subroutine program is named SUB/TXT, then we
could MERGE it with the statement:

MERGE"”SUB/TXT"”
and the resultant program in RAM would be:

18 REM. .. MRIN PROGRAM

28 GOSUB 1868

38 REM. .. MORE PROGRAM LINES HERE
999 END

16@@ REM. . . BEGINNING OF SUBROUTINE
1618 PRINT"EXECUTING SUBROUTINE... "
1828 REM. .. MORE PROGRAM LINES HERE
11668 RETURN

Note that MERGE closes all files and clears all variables. Upon
completion, BASIC returns to the command mode.

7-30

DISK BASIC

RUN*“program”
(load and execute a program from disk)

RUN exp$ [,R]

where exp$ defines the filespec for a BASIC program
stored on disk. R leaves open files open

If the R-option is not selected, all open files will be closed.

When the command is executed, any resident BASIC program will
be replaced by the program contained in exp$.

Example:
SRS el sl ENTER
Loads and executes the BASIC sector-dump program.

Suppose you save the following program on disk with the name
“PROGI1/BAS":

18 PRINTPROGL EXECUTING. .. "
28 RUN"PROGZ/BARS"

And save this program on disk with the name “PROG2/BAS" :

18 PRINT"PROGZ EXECUTING. .. "
26 REUN"PROGL/BRS"

Now type:

SRS WS ENTER
and you’ll see a simple example of program chaining.
Hold down the BREAK key to interrupt the program chain.

SAVE (save program onto disk)

SAVE exp$ [,Al

where exp$ defines the file-name and optional
extension, password, and drive to be used.
If the file-name already exists, its previous
contents will be lost as the file is re-created.

A causes the file to be stored in ASCII rather
than compressed-format.

This command lets you save your BASIC programs on disk. You can
save the program in compressed or ASCII format.

7-31

DISK BASIC

Using compressed-format takes up less disk space and is faster during
both SAVEs and LOADs. This is the way BASIC programs are
stored in RAM.

Using the ASCII option makes it possible to do certain things that
cannot be done with compressed-format BASIC files.

Examples:

¢ The MERGE command requires that the disk file be in
ASCII form.

® You can use the TRSDOS commands LIST and PRINT with
ASCII-format files.

Programs which read in other programs as data will typically
require that the data programs be stored in ASCIL.

Useful conventions for placing extensions on BASIC programs:
For compressed-format programs, use the extension /BAS.
For ASCII format programs, use the extension /TXT.

Examples of SAVE command:

SAVE"FILEL1/BRS. JOHNGDOE . 3"

saves the resident BASIC program in compressed-format with the
file name FILE1, extension /BAS, password .JOHNQDOE; the
file is placed on drive :3.

SAVE"MATHPAKATXT". A
saves the resident program in ASCII form, using the name
MATHPAK/TXT, on the first non write-protected drive.

Upon completion of a SAVE, BASIC returns in the command mode.

7-32

DISK BASIC

File Access

This section is divided into four parts:

1) Creating files and assigning buffers — OPEN and CLOSE
2) Statements and functions

3) Sequential I/O techniques

4) Random I/O techniques.

Creating files and assigning buffers

During the initialization dialog, you type in a number in response to
HOW MANY FILES? The number you type in tells BASIC how
many buffers to create to handle your disk accesses (reads and
writes).

Each buffer is given a number from 1 to 15. If you type:

HOW MANY FILES ENTER
then BASIC sets aside four buffers, numbered 1,2,3 and 4.

You can think of a buffer as a waiting area that data must pass
through on the way to and from the disk file. When you want to
access a particular file, you must tell BASIC which buffer to use
in accessing that file. You must also tell BASIC what kind of
access you want — sequential output, sequential input, or random
input/output.

All this is done with the OPEN statement, and “undone” with the
CLOSE statement.

7-33

DISK BASIC
—

OPEN
(Assign a buffer to a file and set mode)

OPEN expl$§,nmexp,exp23

where expl8 is a string expression or constant of which
only the first character is significant; this
character specifies the mode in which the
file is to be opened:

expl$= access mode

I sequential input
(@) sequential output
R random I/O

nmexp has a value from 1 to 15, and tells BASIC
which buffer to assign to the file specified
by exp2$

exp2$ defines a TRSDOS file specification

This statement makes it possible to access a file. expl$ determines
what kind of access you’ll have via the specified buffer; nmexp
determines which buffer will be assigned to the file; and exp2$ names
the file to be accessed. If exp2§ does not exist, then TRSDOS may
or may not create it, depending on the access mode.

Note: nmexp (buffer number) cannot exceed the number you
entered for the FILES? question during initialization. If you

entered:
ENTER

HOW MANY FILES?
then nmexp can have the value 1 or 2.

Examples of OPEN statements:
1@@ OPEN "0", 4, "CLIENTLS/TXT"

Opens the file “CLIENTLS/TXT" for sequential output. Buffer 1
will be used. If the file does not exist, it will be created. If it already
exists, then its previous contents are lost. (This is explained under
“Sequential I/O Techniques™.)

i@@ OPEN "1". 41, "PROGL/TKT 1"

Opens the file “PROG1/TXT"” on drive 1 for sequential input. Buffer
:l is assigned to the file. If PROG1/TXT does not exist on drive 1, an

error message is returned — since you can’t input from a non-existent
file!

N

7-34

DISK BASIC
.~~~

188 INPUT"MODE (1.0, RO>"; MODE$

116 INPUT"BUFFER HUMEBER"; BUFFERY

126 INPFUT"FILE SFECIFICATION"; FILESPECS
1% OFEN MODE$. BUFFERX, FILESPECS

This sequence of statements lets you provide the arguments for the
OPEN statement during program execution. The first character of
MODES$ sets the access mode, BUFFER% determines which buffer
will be used, and FILESPECS gives the file specification.

OPEN"R", 2, "DATAR/BRS. SFECIAL"

Opens the file DATA/BAS with password SPECIAL, in the random
I/O mode, using buffer number 2. If DATA/BAS does not exist,
it will be created on the first non write-protected drive.

While a file is open, it is referenced by the buffer-number which was
assigned to it. Examples:

GET buffer-number
PUT buffer-number
PRINT#buffer-number
INPUT #buffer-number

All these statements will reference the file which was OPENed via
buffer-number. The mode must be correct.

Once a buffer has been assigned to a file with the OPEN statement,
that buffer cannot be used in another OPEN statement. You have
to CLOSE it first.

More on Buffer Assignments

Two or more buffers may be assigned to the same file for sequential
input (I-mode). However, only one buffer at a time may be assigned
to a file for sequential output (O-mode) or random access R-mode.

For example:

18 OFEN "I",4, "TEST/TXT:1"
268 OPEN "1V, 2, "TEST/THXT:1"

Now TEST/TXT can be accessed via buffers 1 and 2 for sequential
input.

7-35

DISK BASIC

CLOSE (close access to the file)

CLOSE [nmexp [,nmexp ...]]

where nmexp has a value from 1 to 15, and refers to the
file’s buffer-number (assigned when the
file was opened). If nmexp is omitted, all
open files will be closed.

This command terminates access to a file through the specified
buffer(s). If nmexp has not been assigned in a previous OPEN
statement, then

CLOSE nmexp

has no effect.
Examples of CLOSE statements:
CLOSE 1. 2.8

Terminates the file assignments to buffers 1, 2 and 8. These buffers
can now be assigned to other files with OPEN statements.

CLOSE FIRSTH+COUNTZ

Terminates the file assignment to the buffer specified by the sum
(FIRST% + COUNT%).

Do not remove a diskette which contains an open file — first close
the file. This is because the last 256 bytes of data may not have
been written to disk yet. Closing the file will write the data, if it
hasn’t already been written.

The following actions and conditions cause all files to be
automatically closed:

NEW
RUN

MERGE filespec

EDITing a file

Adding or deleting program lines
Execution of the CLEAR #n statement
Disk Errors

7-36

DISK BASIC

INPUT# (sequential read from disk)

INPUT # nmexp, var[yvar...]

where nmexp specifies a sequential input file
buffer, nmexp=1,2,...,15

var is the variable name to contain
the data from the file

This statement inputs data from a disk file. The data is input
sequentially. That is, when the file is first opened, a pointer is set
to the beginning of the file. Each time data is input, the pointer
advances. To start over reading from the beginning of the file, you
must close the file-buffer and re-open it.

INPUT# doesn’t care how the data was placed on the disk — whether
a single PRINT# statement put it there, or whether it required 10
different PRINT# statements. What matters to INPUT# are the
positions of the terminating characters and the EOF marker.

To INPUT# data successfully from disk, you need to know ahead of
time what the format of the data is. Here is a description of how
INPUT # interprets the various characters it encounters when reading
data.

When inputting data into a variable, BASIC ignores leading blanks;
when the first non-blank character is encountered, BASIC assumes it
has encountered the beginning of the data item.

The data item ends when a terminating character is encountered or
when a terminating condition occurs. The particular terminating
characters vary, depending on whether BASIC is inputting to a
numeric or string variable.

7-37

DISK BASIC

Numeric Input

Suppose the data image on disk is
$1.234p-33pB27% <EN>
<EN?> denotes a carriage-return character (ASCII code decimal 13).

Then the statement

INFUT#L, A.E.C
or the sequence of statements

TNPUTHL. A: INPUTHL B INPUTH#L.C
will assign the values as follows:

A=1.2345
=-33
C=27

This works because blanks and <EN > serve as terminators for
input to numeric variables. The blank before 1.2345 is a “leading
blank’, theretfore it is ignored. The blank after 1.2345is a
terminator; therefore BASIC starts inputting the second variable at
thie — character, inputs the number —33, and takes the next two
blanks as terminators. The third input begins at the 2 and ends
with the 7.

7-38

DISK BASIC

String Input

When reading data into a string variable, INPUT ignores all leading
blanks; the first non-blank character is taken as the beginning of the
data item.

If this first character is a double-quote (**), then INPUT will evaluate
the data as a quoted string: it will read in all subsequent characters
up to the next double-quote. Commas, blanks, and <EN>.
—characters will be included in the string. The quotes themselves

do not become a part of the string.

If the first character of the string item is not a double-quote, then
INPUT will evaluate the data as an unquoted string: It will read in
all subsequent characters up to the first comma, or <EN> |

If double quotes are encountered, they will be included in the string.

For example, if the data on disk is:
PECOS,PTEXAS.“GOOD MELONS"
Then the statement

INFUT#1, A$.B$.C$
would assign values as follows:

AS$=PECOS
B$=pPTEXAS “GOODPMELONS"
C$= null string

If a comma is inserted in the data image before the first double quote,
C$ will get the value, GOOD MELONS.

These are very simple examples just to give you an idea of how
INPUT works. However, there are many other ways to input data —
different terminators, different target variable types, etc.

Rather than taking a shotgun approach and trying to cover them all,
we’ll give a generalized description of how input works and what
the terminating characters and conditions are, and then provide
several examples.

When BASIC encounters a terminating character, it scans ahead to
see how many more terminating characters it can include with the
first terminator. This ensures that BASIC will begin looking for the
next data item at the correct place.

The list below defines the various terminating sets INPUT# will
look for. It will always try to take-in the largest set possible.

7-39

DISK BASIC

Numeric-input terminator sets

end of file encountered

255th data character encountered
, (comma)

<EN>

<EN> <LF>

By ... 1 <EN>]

BB ...1[<EN><LF>]

Quoted-string terminator sets

end of file encountered

255th data character encountered
" (double quote)

"B

"[B...1[<EN>]

"[B...11 <EN> <LF>]

Unquoted-string terminator sets

end of file encountered
255th data character encountered

b

<EN> [<LF>]

Here’s a flow chart describing how INPUT# assigns data to a variable:

f START ;

NO

EXAMINE NEXT SITA PUT IT INTO EXAMINE NEXT ISITA
TENROMN"?:?’%EH? TEMPORARY X TERMINATOR?
CHARACTER CHARACTER
SAVE AREA
YES
PICKUP THE
IGNORE IT TERMINATOR
SET
ieioNbins EVALUATE IT ASSIGN TO END
TEMPORARY VARIABLE
SAVE AREA

7-40

DISK BASIC

The following table shows how various data images will be read-in by
the statement:

INPUTH#L, A, B. C
Ex.# Image on disk Values assigned
1 $123.458 < EN><LF> $8.2E4B$p7000<EN> A=12345
B=82000
C=7000
2 BP3<LE><END> 4 <EN>5 <EN> Al2eof A=34
=5
C=0
3 1,234 <EN> , A=1
B=0
C=2
4 1,3,end-of-file =1
=2

C=0 end of file error

In Example 2 above, why does variable C get the value 0?7 When the
input reaches the end of file, it terminates the last data item, which
then contains ““A12”. This is evaluated by a routine just like the
BASIC VAL function —which returns a zero since the first character
of ““A12” is non-numeric.

In Example 3, when INPUT# goes looking for the second data item,
it immediately encounters a terminator (the comma); therefore
variable B is given the value zero.

The following table shows how various data images on disk will be
read by the statement:

INFUT#1, R¢, BS
Ex.# Image on disk Values assigned
1 PPpp“ROBERTS,J.”ROBERTS M.N eof A$=ROBERTSJ.

B$=ROBERTS M.N.

2 BPPPROBERTS,J. ppPROBERTS,M.N. <EN> A$=ROBERTS
B$=J.

3 THE WORD “QU0”,12345.789 ~<EN> A$=THE WORD “QUO”
B$=12345.789

4 BYTE<LF> <END> UNIT OF MEMORY eof A$=BYTE<LF> <EN> UNIT OF MEMORY
B$=null (eof error)

7-41

DISK BASIC
R Tl

In example 3, the first data item is an unquoted string, therefore the
double-quotes are not terminators, and become part of AS.

In example 4, the <EN> is preceded by an <LF >, therefore it
does not terminate the first string; both <LF> and <EN>
are included in AS.

Technical Note: The above discussion ignores the role of the input
buffer in the sequential input process. Actually, DISK BASIC
always reads in 256-byte data records into the buffer, and then sorts
through what’s in the buffer to “satisfy” the INPUT# variable list.
That’s why

18@ INPUTH#1. H:
206 INFUTH#L, BX

. do not necessarily require two disk accesses. The 256-byte record
in the buffer can contain enough data for A%, B% and more.

LINE INPUT#
(read a line of text from disk)

LINE INPUT#nmexp,var$
where nmexp specifies a sequential output file buffer,
nmexp=1,2,...,15

var$ is the variable name to contain the string
data

Similar to LINE INPUT from keyboard, this statement reads a
“line” of string data into var$. This is useful when you want to

read an ASCII-format BASIC program file as data, or when you want
to read in data without following the usual restrictions regarding
leading characters and terminators.

LINE INPUT (or LINEINPUT — the space is optional) reads
everything from the first character up to:

1) an <EN?> character which is not preceded by<LF >
2) the end-of-file

3) the 255th data character (this 255 character is included
in the string)

Other characters encountered — quotes, commas, leading blanks,
<LF> <EN?> pairs — are included in the string.

7-42

DISK BASIC

For example, if the data looks like:

10 CLEAR 500 <EN>
20. OPEN “I",1,PROG"” <EN>

then the statement
LINEINFUT#H#1, R$

could be used repetitively to read each program line, one line at a
time.

PRINT# (sequential write to disk file)

PRINT#nmexp,[USING format$;] explp exp ...

where nmexp specifies a sequential output file buffer,
nmexp=1,2,...,15

format$ is a sequence of field specifiers used with
the USING option

p is a delimiter placed between every two
expressions to be PRINTed to disk; either
a semi-colon or comma can be used
(semi-colon is preferable)

exp is the expression to be evaluated and
written to disk

This statement writes data sequentially to the specified file. When
you first open a file for sequential output, a pointer is set to the
beginning of the file, therefore your first PRINT# places data at

the beginning of the file. At the end of each PRINT# operation, the
pointer advances, so the values are written in sequence.

A PRINT # statement creates a disk image similar to what a PRINT
to display creates on the screen. Remember this, and you’ll be able
to set up your PRINT# list correctly for access by one or more
INPUT statements.

PRINT# does not compress the data before writing it to disk; it
writes an ASCII-coded image of the data.

7-43

DISK BASIC

For example, if A=123.45
PRINT#4. A
will write a nine-byte character sequence onto disk:
$123.456 <EN>
The punctuation in the PRINT list is very important. Unquoted

commas and semi-colons have the same effect as they do in regular
PRINT to display statements.

For example, if A=2300 and B=1.303, then
PRINT#1. A, B

places the data on disk as

$2300PPuHBIBPRHH1.303p <EN>
The comma between A and B in the PRINT# list causes 10 extra
spaces in the disk file. Generally you wouldn’t want to use up

disk space this way, so you should use semi-colons instead of
commas.

PRINTH#L. F: B
writes the data as:

2300 1.303 <EN>

PRINT# with numeric data is quite straightforward — just remember
to separate the items with semi-colons.

PRINT# with string data requires more care, primarily because you
have to insert delimiters so the data can be read back correctly. In
particular, you must separate string items with explicit delimiters
if you want to INPUT# them as distinct strings.
For example, suppose:

A$="JOHN Q. DOE"” and B$="100-01-001""
Then:

FRINT#1. R$;E$

would produce this image on disk:

7-44

DISK BASIC

JOHN Q. DOE100-01-001 <EN>
which could not be INPUT back into two variables.
The statement:

PRINT#1. A% " "B
would produce:

JOHN Q. DOE, 100-01-001

which could be INPUT# back into two variables.

This method is adequate if the string data contains no delimiters —
commas or <EN> —characters. But if the data does contain
delimiters or leading blanks that you don’t want to ignore, then you
must supply explicit quotes to be written along with the data.
For example, suppose A$=""DOE, JOHN Q.” B$="100-01-001""
If you use

PRINT#1, A$; ", "; B¥
the disk image will be:

DOE, JOHN Q.,100-01-001 <EN>
When you try to input this with a statement like

INPUTH#Z, A, BS

A$ will get the value “DOE”, and BS will get “JOHN Q.” — because
of the comma after DOE in the disk image.

To write this data so that it can be input correctly, you must use
the CHRS function to insert explicit double quotes into the disk
image. Since 34 is the decimal ASCII code for double quotes, use
CHR$(34) as follows:

PRINT#1, CHR$(34); A$; CHR$(34); BS
this produces the disk image

“DOE, JOHN Q.””100-01-001 <EN>

which can be read with a simple

INFUT#2, RS, B$

7-45

DISK BASIC

Note: You can also use the CHR$ function to insert other delimiters
and control codes into the file, for example:

CHR$(10) <LF> Line Feed
CHRS$(13) carriage return (<XEN >character)
CHRS$(11) or CHR$(12) line-printer top-of-form

USING Option

This option makes it easy to write files in a carefully controlled
format. You could create a report file this way, which then could be
LISTed or PRINTed (TRSDOS commands).

Or you could use this option to control how many characters of a
value are written to disk.

For example, suppose:
AS$="LUDWIG"”
B$=""VAN"
C$="BEETHOVEN"

Then the statement
PRINT#4, USING"!. ' ¥ X"“;A$:B$: CS
would write the data in nickname form:
L.V.BEET <EN>

(In this case, we didn’t want to add any explicit delimiters.) See the
PRINT USING description in the LEVEL II BASIC Reference
Manual for a complete explanation of the field-specifiers.

Technical Note: The above discussion ignores the role of the
output buffer in the sequential write process. Actually, the data is
first placed into the buffer, and then, as 256-byte records are filled,
the data is written to the disk file. That’s why there isn’t always a
disk access during execution of each PRINT# statement.

7-46

DISK BASIC

Random Access Statements

FIELD
(organize a random file-buffer into fields)

FIELD nmexp,nmexpl AS varl3 [,nmexp2 ASvar23...]

where nmexp specifies a random access file buffer,
nmexp=1,2,...,15
nmexpl specifies the length of the first field,
varl$ defines a variable name for the first field
nmexp2 specifies the length of the second field
var2$ defines a variable name for the second field
subsequent nmexp AS var$ pairs define
other fields in the buffer

Before FIELDing a buffer, you must use an OPEN statement to
assign that buffer to a particular disk file (must use random access
mode). Then use the FIELD statement to organize a random file
buffer so that you can pass data from BASIC to disk storage and
vice-versa.

Each random file buffer has 255 bytes which can store data for
transfer from disk storage to BASIC or from BASIC to disk.
However, you need a way to access this buffer from BASIC so
that you can either read the data it contains or place new data
in it. The FIELD statement provides the means of access.

You may use the FIELD statement any number of times to
“re-organize” a file buffer. FIELDing a buffer does not clear

the contents of the buffer; only the means of accessing the buffer
(the field names) are changed. Furthermore, two or more field
names can reference the same area of the buffer.

Examples:
FIELD 1. 255 RS A¢

This statement tells BASIC to assign the entire 255-byte buffer to

the string variable A$. If you now print AS, you will see the contents
of the buffer. Of course, this value would be meaningless unless you
have used GET to read a 255-byte record from disk.

Note: All data — both strings and numbers — must be placed into
the buffer in string form. There are three pairs of functions

(MKI$/CVI,MKS$/CVS,MKD$/CVD) for converting numbers to
strings and vice-versa. See “Functions”, below.

7-47

DISK BASIC

FIELD 2, 416 AS HM$, 25 AS AD$, 18 AS CY4, 2 AS STH 7 RS ZP$

The first 16 bytes of buffer 3 are assigned the buffer name NM$; the
next 25, ADS; the next 10, CY$; the next 2, ST$; and the next
7, ZP$. The remaining 195 bytes of the buffer are not fielded at all.

More on field names

Field names, like NM$,ADS$,CY$,STS and ZP$, are not string
variables in the ordinary sense. They do not consume the string
space available to BASIC.

Instead, they point to the buffer field which you assigned with the
FIELD statement. That’s why you can use:

183 FIELD 1,255 RS A#

without worrying about whether 255 bytes of string space are
available for AS.

If you use a buffer field name on the left side of an ordinary assignment
statement, that name will no longer point to the buffer field; therefore
you won’t be able to access that field using the previous field name.

For example,
A$=B¥
nullifies the effect of the FIELD statement above (line 100).

During random input, the GET statement places data into the
255-byte buffer, where it can be accessed using the field names
assigned to that buffer. During random output, LSET and RSET
place data into the buffer, so you can then PUT the buffer contents
into a disk file.

Often you’ll want to use a dummy variable in a FIELD statement
to ““pass over’’ a portion of the buffer and start fielding it somewhere
in the middle. For example:

FIELD 4,45 AS CLIENT$(12,142 RS HIST$CLD
FIELD 4,128 AS DUMMY$, 15 AS CLIENT$(2), 112 AS HIST#{2D

In the second FIELD statement, DUMMY S serves to move the starting
position of CLIENTS$(2) to position 129. In this manner, two
identical “subrecords” are defined on buffer number 1. We won’t
actually use DUMMY$ to place data into the buffer or retrieve it from
the buffer.

7-48

DISK BASIC

The buffer now “looks” like this:

(] a2 L1185 a2
cLS HISTS X |CLS HISTS
(n () (2) (2)

le——DUMMYS ————>

Note that only one byte (the 128th byte) is left unused in this field
structure.

GET
(read a record from disk — random access)

GET nmexpl|,nmexp2]

where nmmexpl specifies a random access file buffer,
nmexpl=1,2,...,15
nmexp2 specifies which record to GET in the
file; if omitted, the current record will
be read.

This statement gets a data record from a disk file and places it in the
specified buffer. Before GETting data from a file, you must open
the file and assign a buffer to it. That is, a statement like:

OPEN "“R"",nmexpl,filespec
is required before the statement:

GET nmexpl,nmexp2

When BASIC encounters the GET statement, it looks at the buffer’s
control block, and obtains:

the information needed to access the file

the mode in which this buffer was set up (must be R)
the current record number

The EOF (end-of-file) record number, i.e., the highest
numbered record in the file

®]ots of other information for internal use

BASIC then reads record nmexp2 from the file and places it into the
buffer. If you omit the record number, it will read the current record.

The “current record” is the record whose number is one higher than
that of the last record accessed. The first time you access a file via
a particular buffer, the current record is set equal to 1.

7-49

DISK BASIC

For example:

Program statement Effect

1000 OPEN“R"”,1,“NAME/BAS’” Open NAME/BAS for random
access using buffer 1

1010 FIELD 1,... Structure buffer

1020 GET 1 GET record 1 into buffer 1
1025 REM. .. ACCESS BUFFER

1030 GET 1,30 GET record 30 into buffer 1
1035 REM... ACCESS BUFFER

1040 GET 1,25 GET record 25 into buffer 1
1046 REM ... ACCESS BUFFER

1050 GET 1 GET record 26 into buffer 1

If you attempt to GET a record whose number is higher than that
of the end-of-file record, BASIC will fill the buffer with hex zeroes,
and no error will occur.

To prevent this from occurring, you can use the LOF function to
determine the number of the highest numbered record.

PUT
(write a record to disk — random access)

PUT nmexpl | ,nmexp2]

where nmexpl specifies a random access file buffer,
nmexp=1,2,...,15

nmexp2 specifies the record number in the file,
nmexp2=1,2,..,up to 335, depending
on how much space is available on the
disk; if nmexp?2 is omitted, the current
record number is assumed.

This statement moves data from a file’s buffer into a specified place
in the file. Before PUTing data in a file, you must:
1) OPEN the file, thereby assigning a buffer and defining the
access mode (must be R);
2) FIELD the buffer, so you can
3) place data into the buffer with LSET and RSET statements.

7-50

DISK BASIC

When BASIC encounters the statement:
PUT nmexp nmexp2
it does the following:

Gets the information needed to access the disk file
Checks the access mode for this buffer (must be R)

® Acquires more disk space for the file if necessary to
accommodate the record indicated by nmexp2

e Copies the buffer contents into the specified record of the
disk file

o Updates the current record number to equal nmexp2+1

The ““current record” is the record whose number is one higher than
the last record accessed. The first time you access a file via a
particular buffer, the current record is set equal to 1.

If the record number you PUT is higher than the end-of-file record
number, then nmexp2 becomes the new end-of-file record number.

This has an important implication. When you PUT a record whose
number exceeds the EOF record number, space is allocated on the
disk to accommodate the new highest record number plus all
lower-numbered records. For example,

PUT nmexp,336
will always produce a DISK FULL message, since TRSDOS attempts

to find space for all records from 1 to 336 — and 335 is the maximum
number of records available on a diskette.

7-51

DISK BASIC

Examples (assume a file named SAMPLE/BAS exists and that you
have previously written 10 records to it, so that LOF=10):

Program statement Effect

1000 OPEN“R",1,”SAMPLE/BAS” Open SAMPLE/BAS for random
address under buffer 1

1010 FIELD 1,...... Prepare buffer

1020 LSET Place data in buffer

1030 PUT 1 Copy buffer contents into
current record (F#1)

1035LSET......... Place data in buffer

1040 PUT 1,30 Acquire disk space for records
2 through 30 and copy

buffer contents into record
30;set LOF=30

1045 LSET Place data in buffer

1050 PUT 1,25 Copy buffer contents into
record 25

1055 LSET Place data in buffer

1060 PUT 1 Copy buffer contents into

current record (=#26)

7-52

DISK BASIC

LSET and RSET
(place data in a random buffer field)

LSET var$ = exp$ and RSET var$ = exp$

where vpar$ is a field name

exp$ contains the data to be placed in the buffer
field named by var$

These two statements let you place character-string data into fields
previously set up by a FIELD statement.

For example, suppose NM§$ and AD$ have been defined as field
names for a random file buffer. NMS$ has a length of 18 characters,
and ADS has a length of 25 characters.

Now we want to place the following information into the buffer
fields so it can be written to disk:

name: JIM CRICKET, JR.
address: 2000 EAST PECAN ST.

This is accomplished with the two statements:

LSET HM$="JIM CRICKET.JR "
LSET AD$="2@8@ ERST PECAN ST. "

This puts the data in the buffer as follows:

| JIMPCRICKET,JR.BBY | | 2000$EASTYPECANBST.Bpib5} |

NMS$ ADS
Note that filler spaces were placed to the right of the data strings
in both cases. If we had used RSET instead of LSET statements, the
filler spaces would have been placed on the left. This is the only
difference between LSET and RSET.

For example:

REET NM$="JIM CRICKET.JE. "
RSET AD$="20@8 EAST PECAN S5T. "

places data in the fields as follows:

| BYBJIMPCRICKET JR. | | PPBBBY2000pEASTPPECANYST. |
NMS ADS$

7-53

DISK BASIC

If a string item is too large to fit in the specified buffer field, it is
always truncated on the right. That is, the extra characters on the

right are ignored.

CVD, CVI and CVS
(restore string to numeric form)

CVD(exp$)

where exp$

CVI(exp$)

where exp$

CVS(exp$)

where exp$

defines an eight character string; exp3$ is
typically the name of a buffer-field

containing a numeric string. If LEN(exp$)<8,
an ILLEGAL FUNCTION CALL error occurs;
if LEN(exp$)>8, only the first eight characters
are used.

defines a two-character string; exp$ is
typically the name of a buffer-field

containing a numeric string. If LEN(exp$) <2,
an ILLEGAL FUNCTION CALL error occurs;
if LEN(exp$) > 2, only the first two characters
are used.

defines a four-character string; exp$ is
typically the name of a buffer-field
containing a numeric string. If
LEN(exp$)<4, an ILLEGAL FUNCTION
CALL error occurs; if LEN(exp$)>4,
only the first four characters are used.

These functions let you restore data to numeric form after it is read
from disk. Typically the data has been read by a GET statement, and
is stored in a random access file buffer.

The functions CVD, CVI, CVS are inverses of MKD$, MKIS$, and

MKSS, respectively.

For example, suppose the name GROSSPAY$ references an eight-
byte field in a random-access file buffer, and after GETting a record,
GROSSPAY S contains a MKDS$ representation of the number

13123.38.

7-54

DISK BASIC

Then the statement:

PRINT CVYDCGROSSPAYS$)-TRXES

prints the result of the difference, 13123.38—TAXES. Whereas the
statement:

PRINT GROSSPRY$-THXES

will produce a TYPE MISMATCH error, since string values cannot be
used in arithmetic expressions.

Using the same example, the statement
R#=CYD(GROSSPAYS)

assigns the numeric value 13123.38 to the double-precision variable
A#.

EOF (end-of-file detector)

EOF(nmexp)

where nmexp specifies a file buffer,
nmexp=1,2,...,15

This function checks to see whether all characters up to the end-of-

file marker have been accessed, so you can avoid INPUT PAST END
errors during sequential input.

Assuming nmexp specifies an open file, then EOF(nmexp) returns
0 (false) when the EOF record has not yet been read, and —1 (true)
when it has been read.

Examples:

IF EOFCS> THEM PRINT"END OF FILE"FILENMS
IF EOF(MMZ> THEN CLOSE NMZ

7-55

DISK BASIC

The following sequence of lines reads numeric data from DATA/TXT
into the array A(). When the last data character in the file is read,
the EOF test in line 30 “‘passes’, so the program branches out of the
disk access loop, preventing an INPUT PAST END error from
occurring. Also note that the variable I contains the number of
elements input into array A().

S DIM ACLBEY “ASSUMING THIS IS R SAFE YALUE

18 OFEN "1, 1, "DATA/THTY

o8 3=

33 IF EOF¢1) THEN 7@

48 INPUT#L, ACIR)

56 IH=Ix+l

68 GOTO 3@

78 REM PROGRAM CONTINUES HERE AFTER DISK INPUT

LOF (get end-of-file record number)

LOF(nmexp)

where nmexp specifies a random access buffer
nmexp=1,2,...,15

This function tells you the number of the last, i.e., highest numbered,
record in a file. It is useful for both sequential and random access.

For example, during random access to a pre-existing file, you often
need a way to know when you’ve read the last valid record. LOF
provides a way.

Examples:

1@ OPEN "R", 1, "UNKNOWNATHT"
2@ FIELD 1,255 AS A$

38 FORIM=1 TO LOF{LD

48 GET 4. IX

58 PRINT A$

68 NEXT

In line 30, LOF(1) specifies the highest record number to be accessed.

Note: If you attempt to GET record numbers beyond the end-of-file
record, BASIC simply fills the buffer with hexadecimal zeroes, and
no error is generated.

When you want to add to the end of a file, LOF tells you where to
start adding:

186 I%=LOFc1d+1 “HIGHEST EXISTING RECORD
1ia PUT 1, IX “HDD NEXT RECORD

7-56

DISK BASIC

MKD$, MKI$ and MKS$
(convert data, numeric-to-string)

MKDS$(nmexp)

where nmexp is evaluated as a double-precision number

MKI$(nmexp)

where nmexp is evaluated as an integer,
—32768<=nmexp <32768;if nmexp exceeds
this range, an ILLEGAL FUNCTION CALL
error occurs; any fractional component in
nmexp is truncated

MKS$(nmexp)

where nmexp is evaluated as a single-precision number

These functions change a number to a “‘string”. Actually the byte
values which make up the number are not changed; only one byte,
the internal data-type specifier, is changed, so that numeric data can
be placed in a string variable. (See LEVEL II Reference Manual,
VARPTR Function, for details of internal number representation.)

That is:

MKDS$ returns an eight-byte string
MKI$ returns a two-byte string
MKSS$ returns a four-byte string

Examples:

ASC(MKIS$(1%)) equals the Isb of 1%, i.e., (1% AND 255)
ASC(RIGHT$(MKI$(I),1))=the msb of 1%, i.e., INT(1%/256)

LSET AVG$=MKS$(0.123)

AVGS$ would typically reference a four-byte random buffer field.
Now it contains a representation of the single-precision number
0.123.

7-57

DISK BASIC

LSET TALLY$=MKI$<IX>

Field name TALLY$ would now contain a two-byte representation
of the integer [%.

AE=MKI$(2/1)

AS$ becomes a two-byte representation of the integer portion of 8/1.
Any fractional portion is ignored. Note that A$ in this case is a
normal string variable, not a buffer-field name.

Suppose BASEBALL/BAT (a non-standard file extension) has been

opened for random access using buffer 2, and the buffer has been
FIELDed as follows:

field: NM$ YRS$S AVGS HR§ ABS ERNINGS
length: 16 2 4 2 4 4

NMS$ is intended to hold a character string; AVGS, ABS and
ERNINGS, converted single-precision values; YRS and HRS,
converted integers.

Suppose we want to write the following data record:

SLOW LEARNER played 38 years ; lifetime batting average .123;
career homeruns, 11; at bats, 32768; ..., earnings —13.75.

Then we’d use the make-string functions as follows:

166@ LSET NM$="SLOW LERRNER"
1818 LSET YRS$=MKI$c38s

18268 LSET AVGS=MKS$(1230
1838 LSET HR$=MEI${11)

1848 | SET ABS=MKS$CI27ER)
18368 LSET ERNING$=MKS$(-13 750

After this sequence, you can write SLOW LEARNER’s information
to disk with the PUT statement. When you read it back from disk
with GET, you will need to restore the numeric data from string

to numeric form, using CVI and CVS functions.

7-58

DISK BASIC

Sequential A ccess Techniques

Sequential input/output is the simplest way to store data in disk
files and retrieve it into BASIC variables.

To write to disk, you open a file for sequential output, PRINT# the
data, and close the file. To read the data back, you simply open
the file for sequential access and INPUT # the data directly into
BASIC variables — in the same order as the data was written onto
the disk.

Sequential Output — An Example

Suppose we want to store a table of English-to-metric conversion

constants:

English unit Metric equivalent

1 inch 2.54001 centimeters
1 mile 1.60935 kilometers
1 acre 4046.86 sq. meters
1 cubic inch 0.01638716 liter

1 U.S. gallon 3.785 liters

1 liquid quart 0.9463 liter

1 1b (avoir) 0.45359 kilogram

First we decide what the data image is going to be. Let’s say we want
it to look like this:

english unit—>metric unit, factor <EN>
For example, the stored data would start out:
IN->CM,$2.540018 <EN>

The following program will create such a data file.

Note: <EN> represents a carriage return, hex OD.

7-59

DISK BASIC

18 OFEN"O", 1, "METRICATHT"

268 FORIXN=1 TO 7

38 READ UNITS, FACTR

48 PRINTH#1, UNITS: ", ": FRCTR

S8 MEXT

o8 CLOSE

78 DATA IN-ZCM, 2. 540861, M1-2KM, 1. 68955, ACRE->S0. M, 4846, 86
S8 DHTA CUL IN-BLTR, 1. 638716E-2, GAL->LTR. 3. 785

28 DATA LIG QT->LTR. 8. 9463, LB-DKG, @ 45359

Line 10 creates a disk file named METRIC/TXT, and assigns buffer 1
for sequential output to that file. The extension /TXT is used because
sequential output always stores the data as ASCII-coded text.

Note: If METRIC/TXT already exists, line 10 will cause all its data
to be lost. Here’s why: Whenever a file is opened for sequential
output, the EOF marker is set to the beginning of the file. In effect,
TRSDOS “forgets” that anything has ever been written beyond

this point.

Line 40 prints the current contents of UNIT$ and FACTR to the file
buffer. The disk-write won’t actually take place until the buffer is
filled or you close the file, whichever happens first. Since the string
items do not contain delimiters, it is not necessary to print explicit
quotes around them. The explicit comma is sufficient.

Line 60 closes the file. The EOF marker points to the end of the last

data item, i.e., 0.45359, so that later, during input, DISK BASIC will
know when it has read all the data.

7-60

DISK BASIC

Sequential Input — An Example

The following program reads the data from METRIC/TXT into two
“parallel” arrays, then asks you to enter a conversion problem.

n

5 CLERR Se@
168 DIM UNITS$(S, FACTROS) “ALLOWS FOR WP TO 18 DRTA PARIES
OPEN"I". 1, "METRICATHT"

1¥%=6

IF EOFCL» THEN 7a

THPUTHL, UNIT$CIE s FACTROIR?

[U=1H+1

GOTO =@

REM. .. THE COMVERSION FACTORS HAVE BEEM READ IM
@ CLS: PRINT TABCS)"sx ENGLISH TO METRIC COMVERSIONS s
118 FOR ITEMHE=0TOIX-1

1208 PRINT USING" (## " A ITEME, UNITSCITEME?
128 HEXT
148 PRINTE7G4, "WHICH CONVERSION “;

1568 INPUT CHOICEZ

155 PRINTETES, "ENTER ENGLISH QUANTITYY:
168 INPUT ¥

178 PRINTYTHE METRIC EQUIVALENT IS"W#FACTRICHOICEYD

188 INPUT"FRESS ENTER TO CONTINUE"; ¥

198 PRIMTEYO4, CHR$CZ1); “CLERR TO END OF FRAME

266 GOTO 148

=4 X B 1) PO PO
Eﬁ'dﬂ'lﬂi b | ISI’E.]

Line 20 opens the file for sequential input. The read pointer is
automatically set to the beginning of the file.

Line 30 checks to see that the end-of-file record hasn’t been read.
If it has, control branches from the disk input loop to the part of the
program that uses the newly acquired data.

Line 40 reads a value into the string array UNIT$(), and a number into
the single-precision array FACTR(). Note that this INPUT list
parallels the PRINT # list that created the data file (see the section
“Sequential Output: An example™). This parallelism is not required,
however. We could just as successfully have used:

4@ INPUTHL, UNIT$CI%) : INPUT#L, FRCTRCIZD

7-61

DISK BASIC

How to update a file

Suppose you want to add more entries into the English-Metric
conversion file. You can’t simply re-open the file for sequential
output and PRINT # the extra data — that would immediately set
the end-of-file marker to the beginning of the file, effectively
destroying the file’s previous contents. Do this instead:

1) Open the file for sequential input

2) Input the entire file and store it
(typically in one or more arrays)

3) Close the file

4). Add your new entries to the data array, or correct
existing entries

5) Re-open the file for sequential output

6) Output the updated data array to the file

7) Close the file

If the file is too large to fit in memory, update it this way:

1) Open the file for sequential input

2) Open another new data file for sequential output

3) Input a block of data and update the data as necessary

4) Output the data to the new file

5) Repeat steps 3 and 4 until all data has been read,
updated, and output to the new file; then go to
step 6

6) Close both files

7) Kill the old data file

8) Rename the new file (TRSDOS RENAME command)
to the name of the old file.

7-62

DISK BASIC

Sequential LINE INPUT - An Example

Using the line-oriented input, you can write programs that edit other
BASIC program files : renumber them, change LPRINTSs to PRINTS,
etc. — as long as these “‘target” programs are stored in ASCII format.

The following program counts the number of lines in any disk file
with the extension “//TXT".

16 CLERR Zaa
28 INPUT "MHAT IS5 THE MAME OF THE PROGRRM": FROGE
28 IF INSTROPROGE, "/TXT"=@ THEM 148 "REQUIRE ATHT EXTENSION
46 OPEN"I", 1, PROGH
58 I4=@
&8 IF EOFCLXTHEN 9@
78 IZ=1x+1: LINE INFUTH#1. TEMP$
85 GOTOGE
98 PRINT"THE PROGRAM IS"IX"LINES LONG. "
168 CLOSE: GOTOZ8
118 PRINT "FILESPEC MUST INCLUDE THE EXTENSION -~ /THT
128 GOTOz@
For BASIC programs stored in ASCII, each program line ends with
an <EN > character not preceded by an < LF > line feed.
So the LINE INPUT in line 70 automatically reads one entire line at

a time, into the variable TEMPS. Variable 1% actually does the
counting.

To try out the program, save DISKDUMP/BAS as a text file:

LOAD" D ISKDUMP/BRS™
SAVEDISKDUMP/THT", A

This gives you a second, ASCII-format version of DISKDUMP.

Now type in the line-counter program and tell it to examine the
program DISKDUMP/TXT.

7-63

DISK BASIC

Disk Storage during Sequential A ccess

One thing that makes sequential access so simple is that you can
generally ignore the details of disk storage. You just write your data
and read it back.

Described below are a few of the technical details and hints you
should keep in the back of your mind. In some situations, they will
become important.

1.

7-64

PRINT # statements don’t write data directly to the disk;
instead, the data is placed in the 256-byte output buffer.
When this buffer is filled, the contents are automatically
written to disk. (Closing the file will also write the buffer
to disk.)

If a DISK FULL ERROR occurs during execution of a PRINT#
statement, you should realize that the current contents of the
output buffer have not been written to the file. The data in

the disk file is intact, but it doesn’t contain the last few values
you PRINTed to it.

If your variables still contain the data, you can recover it
directly.

DISK BASIC

Random A ccess Techniques

Random access offers several advantages over sequential access:

e Instead of having to start reading at the beginning of a file,
you can read any record you specify.

. To update a file, you don’t have to read in the entire file,
update the data, and write it out again. You can rewrite or
add to any record you choose, without having to go through
any of the other records.

° Random access is more efficient — data takes up less space and
is read and written faster.

. Opening a file for random access allows you to write to and
read from the file via the same buffer.

. Random access provides many powerful statements and
functions to structure your data. Once you have set up the
structure, random input/output becomes quite simple.

The last advantage listed above is also the “hard part” of random
access. It takes a little extra thought.

For the purposes of random access, you can think of a disk file as a
set of boxes — like a wall of post-office boxes. Just like the post
office receptacles, the file boxes are numbered.

The number of boxes in a file will vary, but it’s always a multiple
of 5.

The smallest non-empty file contains 5 boxes, numbered 1 through
5. When the file needs more space to hold more data, TRSDOS
provides it in increments of 5.

These fixed-sized boxes are referred to as “records’”. Each record
contains 256 bytes, 255 of which are available for storing your data.

You can place data in any record, or read the contents of any
record, with statements like:

PUT 1.5 write buffer-1 contents to record 5
GET 4.9 read the contents of record 5 into buffer-1

7-65

DISK BASIC

(#38s) | (888s) | (38s)| (538)| (3%s)

#6 | #7 -
(%) (5525 oTe”

#1 | #2 “GET 1,5” g

RECORDS IN DISK FILE 1/0 BUFFERS IN RAM

The buffer is a waiting area for the data. Before writing data to a file,
you must place it in the buffer assigned to the file. After reading
data from a file, you must retrieve it from the buffer.

As you can see from the sample PUT and GET statements above, data
is passed to and from the disk in 256-byte chunks.

“That’s a lot of data.” But most values occupy only a few bytes:

Integers 2
Single-precision numbers 4
Double precision numbers 8
Strings Up to 255

Therefore you’ll want to place several values into the buffer before
PUTting its contents into the disk file, to avoid wasting disk space.

This is accomplished by 1) dividing the buffer up into fields and
naming them, then 2) placing the string or numeric data into the
fields.

For example, suppose we want to store a glossary on disk. Each
record will consist of a word followed by its definition. We start
with:

168 OPEN"R", 1, "GLOSSARY/BRS®
118 FIELD 1,45 RS WD$. 248 RS MEANINGS

Line 100 opens a file named GLOSSARY/BAS (creates it if it doesn’t
already exist); and gives buffer 1 random access to the file.

Line 110 defines two fields onto buffer 1:
WD$§ consists of the first 15 bytes of the buffer;
MEANINGS consists of the last 240 bytes.

WD$ and MEANINGS are now field-names.

7-66

DISK BASIC

What makes field names different? Most string variables point to an
area in memory called the string space. This is where the value of
the string is stored.

Field names, on the other hand, point to the buffer area assigned
in the FIELD statement. So, for example, the statement:

18 PRINT WD$ ": " MEANINGE
displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer.
LSET, RSET and GET can all be used to accomplish this function.
We’ll start with LSET and RSET, which are used in preparation

for disk output.

Our first entry is the word “left-justify” followed by its definition.

168 OPEN"R". 1. "GLOSSARYA/BRS"

116 FIELD 1,15 AS WD$. 248 AS MEANING#

126 LSET WD$="LEFT-JUSTIFY"

138 LSET MEANING$="TO PLACE A YALUE IN A FIELD FROM LEFT

TO RIGHT: IF THE DATA DOESN‘T FILL THE FIELD, EBLANKS ARE ADDED
ON THE RIGHT; IF THE DATA IS TOD LONG, THE EXTRA CHARACTERS ON

THE RIGHT ARE IGNORED. LSET IS A LEFT-JUSTIFY FUNCTION. "

Line 120 left-justifies the value in quotes into the first field in buffer
1. Line 130 does the same thing to its quoted string. When typing
in line 130, you should insert line-feed <LF > characters (press the
down arrow) to force line breaks as above. This makes it easier

to print out the data after reading it back in to a string variable.

Note: RSET would place filler-blanks to the left of the item.
Truncation would still be on the right.

Now that the data is in the buffer, we can write it to disk with a
simple PUT statement:

148 PUT 1.1
158 CLOSE

This writes the first record into the file GLOSSARY/BAS.

To read and print the first record in GLOSSARY/BAS, use the
following sequence:

158 OPEN"R", 1. "GLOSSARY/BRS"

176 FIELD 1, 15 AS WD$. 240 AS MEANINGS

168 GET 1.1

196 PRINT WD$ ": " MERNINGS

26@ CLOSE
Lines 160 and 170 are required only because we closed the file in
line 150. If we hadn’t closed it, we could go directly to line 180.

7-67

DISK BASIC

Random Access: A general procedure

The above example shows the necessary sequences to read and
write using random access. But it does not demonstrate the primary
advantages of this form of access — in particular, it doesn’t show
how to update existing files by going directly to the desired record.

The program below, GLOSSACC/BAS, develops the glossary example
to show some of the techniques of random access for file maintenance.
But before looking at the program, study this general procedure for
creating and maintaining files via random access.

Step Number See GLOSSACC/BAS, Line Number
1. OPEN the file 110

2. FIELD the buffer 120

3. GET the record to be updated 140

4. Display current contents of 145-170

the record (use CVD,CVI,CVS
before displaying numeric data)
5. LSET and RSET new values into 210-230
the fields (use MKD$,MKI$ MKS§$
with numeric data before setting
it into the buffer)

6. PUT the updated record 240

7. To update another record, continue 250-260
at step 3. Otherwise, go to step 8.

8. Close the file 270

7-68

DISK BASIC

18 REM. . . GLOSSRCCABRS. .
188 CLS: CLEAR a8
146 OPEN"RY. 1, "GLOSSARY/BRS
128 FIELD 1.25 RS MWD$, 228 AS MEANINGE 2 RS Neg
1268 INFUT"WHAT RECORD DO YOU WANT TO RCCESSY; RE
148 GET 4. RX
145 NAN=CYICNA$) “SAYE LINE TO HEXT ALPHRBETICAL ENTRY
1568 PRINT"MWORD: "HO$
168 PRINT"DEF MN:": PRINTHMEANINGH
178 PRINT"HEXT ALPHREETICAL ENTRY: RECORD#"NXX: PRINT
186 WE="". INFUT"TYFE HEW WORD{EMZ OR {EN> IF OKY; W$
196 DE="" PRINT"TYPE HEMW DEF-H OR {EN: IF OK?"LINEINPUTDS
2@ INPUT"TYPE NEW SEQUENCE NUMEBER OF <EN> IF OK"; MXZ
18 IF WEO""THEN LSET WD$=W$
28 IF DU THEN LSET MERMINGS=D#
Z0 LSET Nx$=MKI$(NKK)
4 FUT 1. RE
45 RH=NXX “USE NEXT ALPHA. LINK RS DEFAULT FOR HEXT RECORD
S8 CLS: INPUTY TYFECEN> TO READ HEXT ALFHA. ENTRY.
OF RECORD # <EN> FOR SPECIFIC ENTRY.
OF @ <EN> TO QUIT":RB%
o8 IF @<Rk THEM 144
78 CLOSE
288 END

Notice we’ve added a field, NX§$, to the record (line 120). NX$ will
contain the number of the record which comes next in alphabetical
sequence. This enables us to proceed alphabetically through the
glossary, provided we know which record contains the entry which
should come first.

For example, suppose the glossary contains:

pointer to next

record # word (WD$) defn, alpha. entry (NX$)
1 LEFT-JUSTIFY e 3
2 BYTE e 4
3 RIGHT-JUSTIFY ... 0
4 HEXADECIMAL 1

When we read record 2 (BYTE), it tells us that record 4
(HEXADECIMAL) is next, which then tells us record 1 (LEFT-
JUSTIFY) is next, etc. The last entry, record 3 (RIGHT-JUSTIFY),
points us to zero, which we take to mean “THE END”,

Since NX$ will contain an integer, we have to first convert that

number to a two-byte string representation, using MKI$ (line 230
above).

7-69

DISK BASIC

MHAT RECORD DO YOU WANT TO ACCESS? 4

WORD: HEXIDECIMAL

DEF“N:

CAPABLE OF EXISTIMG IN ANY OF 16 STRTES, E.G.. THE HEXRDECIMAL
DIGITS @ 4.2, .. %A B C.0LEF. HEAADECIMAL HUMBERS RRE STRINGS
OF HEXADECIMAL DIGITS.

HEAT ALPHRBETICHL ENTRY: RECORD# 1

TYPE MEW WORD OF <EN: IF QK7 HEXRLEL:
TYPE MEW DEF M{EN: OR <EN> IF OK?

TYFE WEW SEQUENCE HWUMBER OR <ENZ IF QK7

TYFECEN: TO READ NEXT ALPHA. ENTRY.

OF RECORD # <EN> FOR SFECIFIC ENTRY.

R 8 CEM: TO QUIT?
WORD: LEFT-JUSTIFY
DEFH:
TO FLACE DATA IN A FIELD FROM LEFT TO RIGHT. ADDING ELANES RS
NECESSARY OM THE RIGHT TO FILL THE FIELD. ANY EXTRA CHARACTERS
ON THE RIGHT ARE IGHORED.

NEXT ALPHRBETICAL ENTRY: RECORD# =

TYFE MEM WORD<EN: OR <EW> IF OK?
TYFE MEW DEF-N<ENZ OR <EN> 1F o ENIER

TYFE MEW SEGUENCE HUMBER OF <EN> IF OK? 2

7-70

DISK BASIC

The following program displays the glossary in alphabetical sequence:

306 REM. .. GLOSSOUT/BHS. .

318 CLS: CLERR z68

328 OPEN"R". 1, "GLOSSHRY/BRS"

38 FIELD 1,45 RS WD, 238 AS MERNINGE 2 AS NX$
348 INPUT"WHICH RECORD IS FIRST ALPHRBETICALLY™: N
358 GET 1.Nx

368 PRINT:PRINTHD$

378 PRINTMEANING#

388 Nx=CVWI{Nx#>

3368 INPUT"PRESS ENTER TO CONTINUE";: X

488 IF Nx<@ THEN 258

418 CLOSE

428 END

Sub-Records

In the glossary example, each entry required the full 255 bytes available
in the buffer. Often this is not the case. When each information-unit
fills only a part of the buffer, it is a good idea to define several

identical sub-records on the buffer. That way you don’t waste disk
space by PUTting records which contain only a few bytes of useful
information.

For example, suppose we want to store a mailing list, and each entry
will consist of:

field field length
name 18
address 25
city 14
state 2
last purchase amt. 4

Total length of entry: 63

Note: The last-purchase-amount will be a single-precision number.
Such values require 4 bytes, therefore the field length is 4.

If we didn’t care about wasting space on the disk, we could use the
following statement:

FIELD 4, 418 AS NM$, 25 AS AD¥, 14 RS CTY$. 2 AS ST$, 4 AS LP%

PUTting such a buffer would create a record consisting of 63 bytes of
information followed by 255-63=192 unused bytes.

7-71

DISK BASIC

A more efficient approach fields the buffer into identical sub-records.
In this case, we can create 255/63 = 4 sub-records plus only 3 wasted
bytes at the end.

Instead of using a very long FIELD statement to explicitly assign each
field, we re-field the buffer once for each sub-record, using a dummy
string, STARTHERES, to start each sub-record at the appropriate
position in the buffer.

FORI®=8 TO 2

FIELD 4. (I##€Z2 RS STARTHERE#$. 18 AS NMECIXD.

29 AS RD$FCIHED 14 RS CTY$CIXD, 2 AS STEOIRD 4 HS LP$CTRD
NERT

The first time through the loop, STARTHERES$ will have a length of
zero. Therefore NM$(0) will start at the first byte; ADS$(0), at the
19th byte, etc.; LP$(0) will end at the 63rd byte.

The second time through the loop, STARTHERES will have a length
of 63. Therefore NM$(1) will start at the 64th byte; ADS$(1), at the
92nd byte, etc.; LPS(1) will end at the 126th byte.

And so forth, until the buffer is completely defined.

To place values in the subrecords of the buffer: assume our mailing
list entries are stored in four arrays, N$(),A$(),C$(),S$(),LP().

Then we can fill the buffer with four entries as follows:

FOR I¥=8TOZ

LESET MMECTXI=N$CTHD

LEET RADSCIXI=RECTIND

LEET CT#IIHI=CHCIHD

LSET ST#OIHI=5$015

LESET LP$CIR=MESSLPOIRD Y
NEXT

7-72

DISK BASIC

How to Access Sub-Records

Since each record in such a file will contain four sub-records, we
need a way to pull out the sub-record we want. This requires that
each sub-record have a unique number which can be related to the
record which contains it.

For this example, suppose we have a printout of the entire mailing
list, starting from the first sub-record in record 1 and going through

to the last sub-record in the last record. We then number them
sequentially, starting with 1.

The following formulas use this number (we’ll call it a key-number)
to determine exactly where the sub-record is in the file:

If the sub-record’s key-number is KEY%, then
PR% = INT(KEY%—1)/4)+1
where PR% is the physical record that contains the sub-record, and
SR%= KEY% — 4*(PR%—1)
where SR% is the sub-record number inside the physical record. For
example, suppose we want to access the entry with key number = 37
(i.e., the 37th entry). Then the physical record which contains it is:
INT((37—1)/4)+1 == > record 10

And its position in record 10 is:

37 — 4*(10-—1)x== > sub-record number 1

7-73

DISK BASIC

A full working program for creating and manipulating a mailing list
follows:

4 CLERR 1866
OPEM"R". 1, "MARILABRSY
A CLS: INPUT"TYPE 4 TO WRITE. 2<EN> TO READ.
BCEME TO QUIT": NE
IF M¥=8 THEW CLOSE: EHD
INFUTHTYPE EEY HUMBER<EN: OR B<ENZ": KEYZ
IF EEY¥=8 THEN 128
PRE=INTOOREYS-10 /4041
SRH=REY g FRE-10
FIELD 1, c(SRHE-12#83) RS STRRTHERE#. 12 AS HME, 25 RS ADY.
14 AS CTY$. 2 AS ST#. 4 RS LPY
196 GET 1.PRX
2868 IF NxX=2THENZHE
218 PRINT"WRITING SUBRECORD #"SRE"IN PHYSICHL RECORD #"FRx
228 PRINT: PRINTUNAMEZ"TRECZ82; @ LINEINPUT N$: LSET HR$=N$
2Z8 PRINTUADDRESS?"TRECZEY: ¢ LINEINFUT RA$: LSET RADI=R$
248 PRINTUCITY?"TRBC2B2: © LINEINPUT C$: LSET CTY$=C$
258 FRINT"STHTET?"TABCZE: @ LINEINPUT S$: LSET ST#=5%
268 PRINT'LAST PURCHRSE"TREC2E); | INPUTLF ESEESHERY LSET Led = PESY {LF}
278 PUT 1, FPRE: PRINT: INPUT"PRESS <EN> TO GO OMY: K. GOTO 128
ZEE FRINT"RERDING SUBRECORD #"SRXYIN PHYSICAL RECORD #"PRX
218 PRINT: PRINT"NAME"TRBCZEXHNE
I28 PRINT'RDDRESS"TRABCZEXRDE
IE8 PRINTYCITY TRECZROCTYS
Z4@ PRINTSTATE"THECZEOSTS
A PRINT USING"LAST PURCHHASE FHERH. #8" CYSILPED
@ PRINT: INPUT"PRESS {EM> TO GO ON": ¥ GOTOLz28

el =
| S)
o ot B x]

= Xy LR B Lot
o 00 S I 0 TR

]

This program actually doesn’t require you to fill the buffer with four
meaningful sub-records. As soon as you've placed a sub-record in the
correct position in the field, the entire buffer is written to disk.
However, the extra space is not wasted; it is always available for
subsequent sub-records to be added.

Note that this would not be the most efficient way to create a list at
one “‘sitting”. In such a case you’d probably want to fill the buffer
with four sub-records before doing the disk-write. The above program
does, however, show you how to update a file using random access.

7-74

DISK BASIC

~

BCENZ TO QUIT?
TYFE KEY HUMBER<EMN>

NAME?
ADDRESS?
CITy?

STHTE?

LAST PURCHASE

TYPE 1 TO WRITE.

FRESS <EN> TO GO ON?

2<EN> TO RERAL.

QF BER

WRITING SUBRECORD # 3 IH PHYSICAL RECORD # 1

ENTER

2
-
m
o

1ENTER

TYFE 1<ENZ TO WRIT
GCEN: TO QUITY

NHME
ALDRESS

CITY

STRTE

LAST PURCHASE

TYFE KEY NUMBER<CENC
REAGING SUBRECORD # 1 IN PHYSTCRL RECORD # 1

FRESS <EN> TO GO ON?

2<EN> TO READ.
O BCEN>?

E.

JOHHEOH, TR
1824 BHM DRIVE
FORT WUMPUS

TH

$ 18873

TYPE 1<EN> TO WRITE. Z<EMN> TO RERD.
B<EN> TO QUIT?

7-75

DISK BASIC

Overlapping Fields

Suppose you want to access a field in two ways — in total and in

part. Then you can assign two field names to the same area of the
buffer.

For example, if the first two digits of a six-digit stock-number specify
a category, you might use the following field structure:

FIELD 1, 6 AS STOCKS,
FIELD 1,2 ASCTGS,

Now STOCKS$ will reference the entire stock-number field, while
CTGS$ will reference only the first two digits of the number.

7-76

DISK BASIC

DISK BASIC Error Messages

Code

Message

Explanation

50

51

53

54

57

61

62

63

64

FIELD OVERFLOW

INTERNAL ERROR

BAD FILE NUMBER

FILE NOT FOUND

BAD FILE MODE

DISK I/O ERROR

DISK FULL

INPUT PAST END

BAD RECORD NUMBER

BAD FILENAME

More than 255 bytes were
allocated to a random-access
buffer.

Error in disk operating system
itself, or disk /O fault.

A file-buffer number was used
improperly; number has not
been assigned to a file with an
OPEN statement.

Attempt to read from a file
which is not contained on the
disk; check name/extension
to see they were specified
correctly.

Attempt to perform disk

file input or output which
conflicts with the mode in
which the file was opened.

An error occurred during
data transfer between the
Computer and a disk file.

All available space on the
diskette has been used.

During sequential input to a
variable, the end of file was
reached before any data
characters were read.

Record number in a PUT
statement exceeded the
range <1,340>.

An invalid file specification
was provided; study “File
Specification”, TRSDOS
Overview.

Note: Disk errors cannot be simulated via the ERROR statement

7-77

DISK BASIC

Code Message Explanation

66 DIRECT STATEMENT IN FILE Attempt to LOAD, RUN, or
MERGE a disk file which is
not a BASIC program.

67 TOO MANY FILES Attempt to place more than
48 files on a single diskette.

68 DISK WRITE-PROTECTED Attempt to write to disk
with write-protect notch
covered.

69 FILE ACCESS DENIED Attempt to access existing
file with incorrect password.

7-78

endices

omO—-02muu>

Contents of This Section

Glossaryc i
MemoryMap B
TRSDOSCharacterTables.......................
BaseConversionscc i .18

Section 8 - Page 1

Appendices

Glossary

access

The method in which information is read from or written to disk;
see random access and sequential access.

address

A location in memory, usually specified as a two-byte hexadecimal
number. The address range<<O to FFFF>is represented in decimal
as<0to 32767 > <-32768,...,-1>

alphabetic
Referring strictly to the letters A-Z.

alphanumeric
Referring to the set of letters A-Z and the numerals 0-9.

argument

The string or numeric quantity which is supplied to a function and
is then operated on to derive a result; this result is referred to as
the value of the function.

array

An organized set of elements which can be referenced in total or
individually, using the array name and one or more subscripts.
In BASIC, any variable name can be used to name an array; and
arrays can have one or more dimensions. AR() signifies a
one-dimensional array named AR; AR(,) signifies a
two-dimensional array named AR; etc.

ASCII

American Standard Code for Information Interchange. This method
of coding is used to store textual data. Numeric data is typically
stored in a more compressed format.

ASCII format disk file

Disk files in which each byte corresponds to one character of the
original data. For example, a BASIC program stored in ASCII format
“looks like” the program listing, except that each character is
ASClII-coded. Compare to compressed-format file.

background task

A relatively slow routine which the computer executes along with
other background tasks, and which is subject to interrupts. When
the interrupt-driven tasks are completed, the background task
continues. See foreground task, task.

82

Appendices

backup disk

An exact copy of the original: a “safe copy”. You should keep
backups of your original TRSDOS diskette and all important data
diskettes.

BASIC

Beginners’ All-purpose Symbolic Instruction Code, the programming
language which is stored in ROM in the TRS-80. Radio Shack
supports LEVEL I BASIC, LEVEL II BASIC, and DISK BASIC.
LEVEL Il is a subset of DISK BASIC.

baud

Signalling speed in bits per second. The LEVEL II cassette interface
operates at 500 baud.

binary

Having two possible states, e.g., the binary digits O and 1. The
binary (base 2) numbering system uses sequences of zeroes and ones
to represent quantities. This is analagous to the Computer’s internal
representation of date, using electrical values for O and 1.

bit
Binary digit; the smallest unit of memory in the Computer, capable
of representing the values 0 and 1.

bootstrap program

A fundamental or primitive program which takes the Computer from
an OFF condition to one in which it is capable of loading and
executing a higher-level program — i.e., a program which allows the
Computer to pull itself up by its own bootstraps”. A program
which initializes the Computer.

break

To interrupt execution of a program. In BASIC the statement
STOP
causes a break in execution, as does pressing the BREAK key.

buffer

An area in RAM where data is accumulated for further processing.
For example, to pass data from BASIC to a disk file, and vice-
versa, the data must go through a file-buffer.

buffer field

A portion of the buffer which you define as the storage area for a
buffer-field variable. Dividing a buffer into fields allows you to
pass multiple values to and from disk storage.

8-3

Appendices

byte
The smallest addressable unit of memory in the Computer,

consisting of 8 consecutive bits, and capable of representing 256
different values, e.g., decimal values from O to 255.

compressed-format

A method of storing information in less space than a standard ASCII
representation would require. An integer always requires two bytes;
a single-precision number, four; a double-precision number, 8 —
regardless of how many characters are required to represent the
numbers as text. String values cannot be stored in compressed
format.

BASIC programs in RAM and non-ASCII disk files are stored in
compressed-format, with all BASIC keywords stored as special
one-byte codes.

command file

A TRSDOS disk file with the extension /CMD. Such a file should
consist of an executable Z-80 program, since TRSDOS will load and
attempt to execute it when you type:

filename [ATRIH;]

Command files can be placed on any disk; in effect, they extend
the set of TRSDOS library commands (though, of course, they
remain external to the TRSDOS system files).

close

Terminate access to a disk file. Before re-accessing the file, you
must re-open it.

data

Information that is passed to our output from a program; under
LEVEL II and DISK BASIC, there are four types of data:

® integer numbers

® single-precision floating point numbers

* double-precision floating point numbers

® character-string sequences, or just “‘strings”

data/device control block (DCB)

An area in RAM associated with an I/O buffer, containing
information the Operating System requires in order to access the
1/0O device or file.

debug
To isolate and remove logical or syntax errors from a program.

8-4

Appendices

decimal

Capable of assuming one of ten states, e.g., the decimal digits
0,1,....,9. Decimal (base 10) numbering is the everyday system,
using sequences of decimal digits. Decimal numbers are stored in
binary code in the Computer.

default

An action or value which is supplied by the Computer when you
do not specify an action or value to be used.

delimiter
A character which marks the beginning or end of a data item, and

is not a part of the data. For example, the double-quote symbol is
a string delimiter to BASIC.

destination

The device or address which receives the data during a data transfer
operation. For example, during a BACKUP operation, the destination
disk is the one onto which the source-disk is being copied.

device

A physical part of the computer system used for data I/O, e.g.,
keyboard, display, line printer, cassette, disk drive, voice synthesizer.

directory
A listing of the files which are contained on a disk.

disk drive or Mini Disk drive
The physical device which writes data onto diskettes and retrieves it.

diskette or disk
A magnetic recording medium for mass data storage.

drive specification or drivespec

An optional field in a TRSDOS file specification and in some
TRSDOS commands, consisting of a colon followed by one of the
digits O through 3. The drivespec is used to specify which drive is to
be used for a disk read or write.

When the drivespec is omitted from a command involving a read
operation, TRSDOS will search.through all the disks for the
desired file, starting with drive O.

When the drivespec is omitted from a command involving a write

operation, TRSDOS will generally search through all non
write-protected drives for the desired file.

85

Appendices

drive number

An integer value from O to 3, specifying one of the Mini Disk
drives. Drive O is closest to the Expansion Interface, and Drive 3
is farthest away. Drive O must always contain the TRSDOS
diskette, with a couple of exceptions.

dummy variable

A variable name which is used in an expression to meet syntactic
requirements, but whose value is insignificant to the programmer.

edit
To change existing information.

end of file or EOF

A marker which indicates the end of a disk file, i.e., where the
meaningful data ends and the unknown begins.

entry point

The address of a machine-language program or routine where
execution is to begin. This is not necessarily the same as the
starting address. Entry point is also referred to as the
transfer address.

expression

A meaningful sequence of one or more variables, constants,
operators and functions.

field

A user-defined subdivision of a random access file-buffer, created
and named with the FIELD statement.

field name

A string variable which has been assigned to a field in a random
access file-buffer via the FIELD statement.

file

An organized collection of related data. Under TRSDOS, a file is the
largest block of information which can be addressed with a single
command. BASIC programs and data sets are stored on disk in
distinct files.

file extension

An optional field in a file specification, consisting of a / followed by
one alphabetic and up to two alphanumeric characters; the
extension can be used to identify the file type, e.g., /BAS, /TXT,
/CIM, for BASIC, text, and core image, respectively.

Appendices

filename

A required field in a file specification, consisting of one alphabetic
followed by up to 7 alphanumeric characters. Filenames are assigned
when a file is created or renamed.

file specification or filespec

A sequence of characters which specifies a particular disk file under
TRSDOS, consisting of a mandatory filename, followed by an
optional extension, password, and drivespec.

foreground task

A relatively fast routine which the Computer must execute
periodically, in sequence with other foreground tasks. Such
tasks are interrupt-driven. See background task, task, interrupt.

format

To organize a new or magnetically erased diskette into tracks and
sectors, via the TRSDOS FORMAT utility. BACKUP also implicitly
formats a blank diskette. Formatted diskettes contain 35 tracks,
each of which contains 10 sectors.

granule

The smallest unit of allocatable space on a disk, consisting of
5 sectors.

hexadecimal or hex

Capable of existing in one of 16 possible states. For example, the
hexadecimal digits are 0,1,2,..,,9,A,B,C,D,E,F. Hexadecimal
(base-16) numbers are sequences of hexadecimal digits. Address and
byte values are frequently given in hexadecimal form. Under DISK
BASIC, hexadecimal constants can be entered by prefixing the
constant with &H.

increment

The value which is added to a counter each time one cycle of a
repetitive procedure is completed.

input

To transfer data from outside the Computer (from a disk file,
keyboard, etc.) into RAM.

87

Appendices

interrupt

A signal which causes the Computer to interrupt whatever it is doing
and perform some other specified task; when the task is completed,
the Computer will generally resume execution of the previous task.
The TRS-80 Expansion Interface includes a 25 millisecond
“heartbeat” interrupt, which is used to drive the real-time clock and
other foreground tasks. Interrupt-driven tasks can be scheduled and
assigned priorities, so that the Computer appears to be doing two

or more things “at once”.

kilobyte or K

1024 bytes of memory. Thus a 12 K ROM includes 12*1024=12288
bytes.

library commands

A set of overlayed TRSDOS commands which are overlayed as
needed into RAM between 5200 and 6FFF, to see which library
commands are available, use the TRSDOS LIB command:

LIB <EN>

logical expression
An expression which is evaluated as either True (=-1) or FALSE (=0).

logical record

A block of data which contains from 1 to 256 bytes, and can be
addressed as a unit, regardless of whether the logical record is
contained in a single record or spans two physical records.
machine language

The Z-80 instruction set, usually specified in hexadecimal code. All
higher-level languages must be translated into machine-language in
order to be executed by the Computer.

null string

A string which has a length of zero; For example, the assignment
A$ = £t rr

makes AS a null-string.

object code

Machine language derived from ‘“‘source code”, typically, from
Assembly Language.

8-8

Appendices

octal

Capable of existing in one of 8 states, for example, the octal digits
are 0,1,...,7. Octal (base-8) numbers are sequences of octal
digits. Address and byte values are frequently given in octal form.
Under DISK BASIC, an octal constant can be entered by prefixing
the octal number with the symbol &O.

open

To prepare a file for access by assigning a sequential input,
sequential output, or random I/O buffer to it.

output

To transfer data from inside a Computer’s memory to some external
area, e.g., a disk file or a line printer.

overlay

To replace one block of code in RAM with another block. Also, the
code which replaces the previous contents of RAM. For example,
the TRSDOS system routines are stored on disk and loaded into a
common area of RAM as overlays.

parameter

Optional information supplied with a command to specify how the
command is to operate. TRSDOS parameters are placed inside
parentheses.

password

An optional field in a filespec consisting of one alphanumeric
followed by up to 7 additional alphanumeric characters. If a file
is created without a password, 8 blanks become the default
password. To access a file, you must specify the password in the
filespec.

Using the TRSDOS ATTRIB command, you can assign both update
and access passwords; the access password will grant only a

limited degree of access, while the update password grants total
access to the file. See filespec.

physical record

The smallest amount of data which can be written to a disk file or
read from it; under TRSDOS, physical records consist of 256 bytes.
Note that physical record length can be ignored by the assembly-
language programmer, since TRSDOS supports logical records of
from 1 to 256 bytes in length.

8-9

Appendices

prompt

A character or message provided by the Computer to indicate that
it’s ready to accept keyboard input.

protected file

A disk file which has a non-blank password, and therefore can only
be accessed by reference to that password.

protection level

The degree of access granted by using the access password: Kill,
rename, write, read, or execute.

random access memory or RAM

Semiconductor memory which can be addressed directly and either
read from or written to. “User RAM” is that portion of RAM which
is left untouched by TRSDOS and DISK BASIC code, from hex 7000
to end of memory.

real-time clock

An interrupt driven routine that keeps time by updating certain
memory locations every 25 milliseconds, regardless of what the
current background task is. At power-on, the real-time clock is set
to 00:00:00. When interrupts are disabled, the clock is stopped.

reset

To press the reset button on the rear left of the TRS-80, next to the
Expansion Interface connection. Pressing reset is equivalent to

powering up the Computer, except that the contents of user RAM
are unaffected.

resident system program

That part of TRSDOS which remains in RAM; the “executive
TRSDOS program”, which calls in other TRSDOS code as needed.

read-only memory or ROM

Pre-programmed semiconductor memory which is directly
addressable but can only be read, not written to. The LEVEL 11
TRS-80 includes 12K of ROM, where a bootstrap program,
LEVEL 11 BASIC, and other code are permanently stored.

routine

A sequence of instructions to carry out a certain function; typically,
a routine may be called from multiple points in a program. For
example: keyboard scan routine.

8-10

Appendices

sector

One-tenth of a track on a diskette, containing 256 bytes of storage;
a TRSDOS ““physical record”.

sequential access

Reading from a disk file or writing to it “from start to finish™,
without being able to directly access a particular record in the file.

statement
A complete instruction in BASIC.

string

Any sequence of characters which must be examined verbatim for
meaning: in other words, the string does not correspond to a
quantity. For example, the number 1234 represents the same
quantity as 1000+234, but the string *'1234"" does not. (String
addition is actually concatenation, or stringing-together, so that:
1234 equals 1+ 2"+ 3" + 14",

system file

A TRSDOS disk file with the extension /SYS. Such files are
read-protected. To avoid confusion, don’t use the extension /SYS
on your own disk files.

syntax

The “‘grammatical’” requirements for a command or statement.
Syntax generally refers to punctuation and ordering of elements
within a statement. See ‘“Notation Conventions”, General
Information, for a description of syntax abbreviations used in
this manual.

task
A relatively fundamental routine which the Computer performs
periodically or upon request.

track

One of 35 concentric circles on the disk, each of which conta%ns
10 sectors, or 2560 bytes of storage. The tracks are not physical
entities like grooves on a record; they are magnetic traces.
transfer address

See entry point.

TRSDOS

TRS-80 Disk Operating System, pronounced ‘triss-doss”.
TRSDOS is supplied on disk and is then loaded into RAM.

811

Appendices

user RAM or user memory

See random access memory.

utility

A program or routine which serves a limited, specific purpose.
There are two extended TRSDOS utilities, FORMAT and BACKUP,
and two non-TRSDOS utilities, DISKDUMP/BAS and TAPEDISK.

write-protect

To physically protect a disk from being written to by placing a tape
over the write-protect notch.

8-12

Appendices

Memory Map

" x0000 1K ROM
X’0400
11 K ROM
X'3000
“ON-BOARD"
MEMORY % 110
X'4000]
X'4200
X'5200
16 K RAM
|\
|
| X'7000
|
Lo
-~ X'8000
16 K RAM
EXPANSION
INTERFACE X'C000
16 K RAM

K X'FFFF

1/0 DRIVERS AND BOOTSTRAP

LEVEL |l BASIC/DISK BASIC

MEMORY MAPPED 1/0

BASIC VECTORS

TRSDOS

DISK BASIC
TRSDOS UTILITIES
USER MEMORY

GENERAL PURPOSE
USER MEMORY

AUXILIARY USER MEMORY

AUXILIARY USER MEMORY

8-13

Appendices

TRSDOS Character Tables

Bit-Pattern Codes

The following table illustrates the bit pattern for each of the 128
TRSDOS characters. The remaining 128 codes represent special
graphics and space compression characters, as described later.
See Notes.

To use the table: Combine the most significant and least significant

bit-patterns for a given character. For example, the character Q
is represented by the pattern: 1010001 (decimal 81).

MOST SIGNIFICANT BITS

(b5 — bg)
000 001 010 011 100 101 110 111
0000 | NULL DLE sP | o e | P @ | p
LEAST 0001 BREAK DC1 ! 1 A Q a g
SiIGNIF. 0010 STX DC2 " 2 B R b r
BITS 0011 ETX DC3 # | 3 c | s c s
by — b1) 0100 EOT DCc4 $ 4 D T d t
0101 ENQ NAK % | 5 E U | e u
0110 | ACK SYN & | 6 F v | ¢ v
0111 BEL ETB 7 Gl w/|ag w
1000 | BKSP CAN { 8 H X h x
1001 HT EM) 9 | Y | y
1010 LF SuB * J z j z
1011 VT ESC + K Al k|4
1100 [FF HOME , <l L] ¥ ¥
1101 CR BOL - = M| | m |-
1110 | CURON | EREOL . S| N =] n |
1111 CUROFF | EREOF / ? O |—] o |DEL

8-14

Appendices

Decimal/Hexadecimal Codes

Code Code Code

Dec. Hex. Char. Dec. Hex. Char. Dec. Hex. Char
0 00 NULL 32 20 SPACE 64 40 @
1 01 BREAK 33 21 ! 65 41 A
2 02 STX 34 22 " 66 42 B
3 03 ETX 35 23 # 67 43 C
4 04 EOT 36 24 $ 68 44 D
5 05 ENQ 37 25 % 69 45 E
6 06 ACK 38 26 & 70 46 F
7 07 BEL 39 27 ’ 71 47 G
8 08 BKSP 40 28 (72 48 H
9 09 HT 41 29) 73 49 1
10 0A LF 42 2A * 74 4A J
11 0B VT 43 2B + 75 4B K
12 oc FF 44 2C ' 76 4C L
13 0D CR 45 2D - 77 4D M
14 OE CURON 46 2E . 78 4E N
15 OF CUROFF 47 2F / 79 4F 0
16 10 DLE 48 30 0 30 50 P
17 1 DC1 49 31 1 81 51 Q
18 12 DC2 50 32 2 82 52 R
19 13 DC3 51 33 3 83 53 S
20 14 DC4 52 34 4 84 54 T
21 15 NAK 53 35 5 85 55 U
22 16 SYN 54 36 6 86 56 v
23 17 ETB 55 37 7 87 57 w
24 18 CAN 56 38 8 88 58 X
25 19 EM 57 39 9 89 59 Y
26 1A SUB 58 3A : Q0 5A Z
27 1B ESC 59 38 ; 91 58 A
28 1c HOME 60 3c < 92 5C Y
29 1D BOL 61 3D = 93 5D -
30 1E EREOL 62 3E > 94 5E >
31 1F EREOF 63 3F ? 95 5F —_—

Note: 96-127 (hex 60-7F) are lower-case counterparts to 64-95 (hex 40-5F).; only
upper-case characters are displayable,

8-15

Appendices

Notes

The TRSDOS character set may be subdivided into the following
functional groups:

decimal code hex code function

0-31 00-1F Control characters

32-95 20-5F Keyboard/display characters

96-127 60-7F Non-printing characters (code-32 is printed)
128-191 80-BF Graphics characters

192-255 CO-FF Space-compression codes

The following control characters may be entered directly from the
keyboard:

character

BREAK
BKSP
HT

LF

CR
CAN
EM
SUB
ESC
EREOF
SP

8-16

Appendices

For a description of the graphics characters, run the following
program. If you do not have a line printer connected, change
all LPRINTSs to PRINTSs and use the shift-@ key to pause the
display.

13 CLS: DEFINT B-2

28 FORI=128 TO 1324

3@ POKE 15268, 1

35 LPRINT CHR$C138)

46 LPRINT"GRAPHICS CODE # "5 1

45 LPRINT CHR$C138)

AL=FOINTCE, @5 A2=POINT (L. @b

AZ=POINTCE 15 RA4=POINTIL. 40

AS=POINTCB, 22 AE=POINT(1. 20
LPRINTTRECSICHRS (R (~48)+4E80; CHR$CAZH(-d@3+48)
LPRINTTABCEICHRS CAZH(-485+48); CHRECAdw ~4E)+480
W LPRINTTABCEICHRS CAS#(~483+480; CHRECAGH(~4@+48)
118 HEXT

(A i

I I |

LD 0D g Ty O

=

The space-compression codes provide a compact means of
representing strings of blanks from zero to 63 blanks.

For example, CO represents zero blanks; C1, 1 blank; C2,
2 blanks; FF, 63 blanks.

8-17

Appendices

Base Conversions

The following table lists base conversions for all one-byte values.

DEC. BINARY HEX. acT.
5] 515151 155 1% 1 B 1] aea
i aageneal el faa1
2 gafanaia @2 @Az
3 Gagaaail Z @aaz
4 anaealEn a4 B
5 goapaiel a5 8a3
& doapalla ag a0e
7 aoEnalil @v aa?
8 (151515 REl i R a1e
9 Hapaigal @9 a1l
1@ aaaeiala en a1z
11 damaiell BB B13
iz aaaaliee ac @i4
1z aaaaliel ab @815
14 agaelile BE a1e
15 gagellll @F aiv
ie poalaBaE 16 926
17 apaiaeEl 41 @21
is doaideie 12 a2z
is 151 % 17154 s N I B2z
2@ dogieaing 44 424
21 ag@leinl 15 823
22 doplalia 16 A6
22 paaiedidl 17 a2y
24 2151 1 Bze
25 geaiiealr 19 azi
26 guBiledid 1A a3z
=y @pgliaidi 1B [EX
28 aaaliian AC LG
29 aaaiided 4D @33
3@ aeai1iie iE aze
3 daeliidl 4F azv
32 gaiaaang 28 348
iz galoaeEal 21 341
4 Aaleeaie 22 a4z
5 agiaeald 23 84z
36 gaiaaian 24 @44

v gaipaiel 25 a45
s galeediia 26 d4e
9 gaiaaiil 27 847
4@ daleinba 28 858
41 aaioieer 29 #31
42 aalEieda 2R @52

8-18

DEL. BINARY HEX. acT
43 agieiedl 2B @3z
44 geieiina 20 B34
45 apigiiel 20 @53
4& agiaiiin 2E 856
47 gainidll 2F asy
48 (5155 R %1 B Bed
43 aaiiaaal Z1 Bel
5@ aaiigaia =2 Bee
51 %1% L S X
a2 aatialng 34 Acd
32 Boiiaiel =5 83
34 aatieiie 22 deé
) aaiieidl 37 a5y
36 aaiiieas 38 ava
a7 geiiisal 29 a7l
a8 daiiieie IR arz
39 aaiiieid =B @73
2 aaiiiieE 30 ard
&1 aaiiiiad 3D (5]
&2 asi114i6 3B #7e
53 515 o S @ars
£ Blapgoea 49 186
&5 glapagal 44 1ai
&6 glaneeis 42 182
&7 alagagil 43 18z
&g aiooaing 44 1a4
&9 algaainl 45 145
7a alepalia 46 121
71 alepaiil 47 187
s alegloee 48 1i@
73 aipaienl 49 141
74 81861816 4R 112
i) ale@iell 4B 112
7e glaailng 4C 114
77 alaeiial 4D 115
78 21861116 4E 1ie
79 pleailil 4F 117
=] aloiees SO 1z8
81 alalpgel Sl 121
82 alaipaie 52 122
83 giaipail a3 123
g4 aiaieles 54 124
g5 aigielel S5 125

Appendices

DEC. BINRRY HEX 0T, DEC. BINARY HEX. 0CT
e eiedelis 56 426 134 166@E118 86 286
&7 eiededl 57 127 135 ig@eedil 87 287
g8 @1ed1a86 58 136 136 1@GELEER 82 216G
59 @iediesd 59 43 137 i@Aaiaal 29 214
9 @idimlE SR 132 138 1@eEiGiA B8R 217
91 eledisdd 5B 433 139 i@@@dAdl SB 213
9z meiieE SC 134 148 de@Edind &0 214
97 @l@diled S0 135 141 i@eediel 80 215
a4 ai@1iii@ S 136 142 deBaiils SE 218
a5, Aiedi44d SF 137 14 d@@aliil &F 217
g, ALLARREE B 14@ 144 1oEiaa8a 96 228
97 alieessi 61 141 143 l@aiéesl 91 221
a5 giieReie S2 142 14c ioeioaia 32 22
99 @110881 63 143 147 lwelegil - 93 zz3
i wiiomion 4 144 148 16019188 94 224
d L et 149 1@@ielEl 95 225
lel o piieElEL s 149 156 1APiEi18 95 226
2 pilgeila 6 4% 151 1@@1edi1 97 237
103 5113?111 &7 i4f 152 1GE1166H 98 23@
led - mllatoes ez loo 153 1@e11861 99 231
e & i 154 iBediede 9R 23z
167 @iieiail 68 1é§ 155 iP@iisdd 9B 233
e Py 156 1@81iiea 50 34
168 @1181168 &0 154 150 teeliiel on e
185 @11A1161 6D 155 = luwlllal oo =
s oilelils e 1ee 158 i@@11118 SE 236
; Timiidd e i 159 18841111 9F 237
111 @l1ed111 &F 457 % laalllll oo :
11 ellallll e e 168 16166008 A@ 248
117 @lileees 78 158 or e =
113 Bii166a1 71 16l o joagpmel W24
114 @iileels 7z 162 16z ledgeals A2 242
" I s . 162 i@deesil k4 243
115 sddiieeil s 163 - o . -
L ERBES gyl 164 10480160 A4 244
116 G1116488 74 164 : - 4 2
117 GlLiAl6L 75 165 i
118 Bl116d16 TE 166 lee lmlaalla o ope 24s
et S 167 18106411 A7 247
119 @liiddd 7 167 ~ lolaald / i
Dy 168 10461688 A2 250
126 eiiliees 78 176 166 ieleis =
d mlLLE s i 9 iededeet A9 251
121 @i1ii@@s 79 17 178 1mts A =
by P ol B 16181648 AR 252
17z el1ided@ PR 472 : ulalals —r 2
o otk 171 1@@1m11 RE 253
=5 wlllld i = 172 1168 AC 254

iz24 @didided PO 174
125 @iiii1ed 70 i¥s
IV SO s s e R S 176
N RS B e s R 177

172 ieiedded AD 255
174 deipddis RE 256
175 1edsi141 AF 237

r Lo 176 19iieee B@ 266

i2g lmeaggoe Sd 281 177 1@iie@@l Ei 22&
129 leemoppl 8L 261 178 1811e@ie Bz 262

1z ledagels B2 282 179 4@d1@edl B3 263
ijé iggggigé ;3 ggj 186 1@iiedee B4 264

LR 4B £ 181 1edimded ES 265
133 10800161 €5 2@5 -

18z 1edi\ids Be 266
L e

8-19

Appendices

[
fa]
~i

DEC. BINARY HEX. OcT. DEC. BINARY HEX.
182 1b446141 BY 267 218 1dedisid DB
124 i8didesa BR 27a 228 1181116 DO
185 1edid88d BSOS 271 221 1iedii\d DD
i8e 1A1iieie BR 2re 222 11811448 DE
18Y imddiall BEB 273 223 11811441 DF

igg 1eddiied BC 274 224 1lieeaRa Ed

183 18111181 BD 275 225 11ieeael EL
196 18111118 BE 276 226 1116@@18 E2
191 18111111 BF 277 227 11188811 E3
192 11608608 CB 366 228 11168188 E4
193 i1e@@aEl C1 0 361 223 1iieeiel ES
134 1160616 C2 3682 238 11168418 EG
195 di@emedl 3 6% 231 1iieedll E7
196 11@eaiéa C4 a4 z32 1limipes ES
197 1186161 C5 285 233 liisieal E3
198 11686418 ©6 386 234 1llsieia ER
199 11888111 07 367 5 iiigigéé E?
s - - - . p 116 »
288 11981688 CE3 318 2o 1ileliel ED

eal ideateei o3 i 2ze 14181118 EE
R e rrrr i
o6 11@eledl OB 34T Sn iiiiges oo
o4 11604168 CC 314 S tiiiommn
Ses 11eedist 0 315 241 iipen B

zec ligelils (€ sle 247 1idiemid F3
267 11@@4441 CF 347 243 1iikedd

: 11 17 244 1iiipien F4
o8 1i@ieEdd DA 1o e iioiow 2
o iimipedd 01 32i ; :

246 1iiieile Fe

217 dieiedeE D4 I24 g:i iiiiiggg Eg
2% 1isieded DS 325 Sem iilileis Fa
244 148448 De 26 = -
) - - 751 41441@41 FE
245 1i@i@ddl ©OF 327 255 11411188 FC
216 11611666 DS A 557 14444481 FD
27 1ipiieed D9 334 s -
 timiimis T 754 44444448 FE

8-20

3 Lad Ll bad bad 1a) Lol

oo ek tad Lad Gad fed

[URR N - B Bs SRR | O O PN |

Lo 1Al L) l.-»{ !
1 T oA

Ty
onof b

ST PR S O W O P
[l Y B2 4

YRR

Index

or
TRSDOS &
DISK BASIC

For: TRSDOS Version 2.1
DISK BASIC Version 1.1

Index

Subject Page
&H, BASIC hex constant prefix 7-6
&0, BASIC octal constant prefix 7-6
< EN>, carriage return character 7-38
<LF>, line-feed character 7-38
ACCESS, v v v e et e 8-2

random 7-65,8-11

sequential 7-60, 8-10
address o 82
alphanumeric L L L 8-2
argument 8-2
AITAY o vt e e e e e 8-2

-notation 1-4
ASCIT v 8-2

format 7-32, 82
assembly-language

I/O,TRSDOS 6-5

access from BASIC 7-14,7-20
ATTRIB, TRSDOS command 4-12
AUTO, TRSDOS command 4-11
BACKUP, TRSDOS utility

abbreviated instructions for 2-16

detailed descriptionof 52

Important Notice 2-17
background task, . 8-2
backupdisk L. 8-3
Base Conversions,

decimal/binary/octal/hex 8-18
BASIC, TRSDOS

commandfile 1-2,34,7-2
BASIC2, TRSDOS command 4.2
baud 8-3
binary 8-3
bit ... 8-3
blocking of logical records

under TRSDOS 6-3,6-7
bootstrap program 8-3
break 8-3
buffer 6-5, 6-6,7-2, 7-33 ff, 8-3
byte 84
cassette I/O under

DISKBASIC 7-5,7-10

Subject Page
CLOCK, TRSDOS command 4-14
clock, real time, see real-time clock
CLOSE, BASIC statement 7-36
closeafile 6-11,7-36, 84
CMD"D’*, BASIC statement 7-7
CMD”R"", BASIC statement 7-10
CMD*”S", BASIC statement 7-10
CMD*T", BASIC statement 7-10
command

file L. 37,84

format, 35
command,

TRSDOS library 4.2 ff, 8-8

TRSDOS system 4-11 ff
compressed format, BASIC 7-31, 8-4
COPY, TRSDOS command 4-15
CVD, BASIC function 7-54
CVI, BASIC function 7-54
CVS,BASIC function 7-54
data 8-4
data/device control block

MCB)cvii. 6-6, 8-4
data diskette 5-4
DATE, TRSDOS command 4-15
DEBUG, TRSDOS command 4.3
debug, 84
decimal 8-5
default 8-5
delimiter, 6-6, 8-5

BASICINPUT # 7-40
DEFFN, BASIC statement 7-11
DEFUSR, BASIC statement 7-14
destination 8-5

diskette 5-2
DEVICE, TRSDOS command 4-16
device, 8-5
DIR, TRSDOS command, 4-16
directory 8-5

Subject Page
DISK BASIC

€ITOT MESSAZES .« v v v v v e v e e e v 7-77

ROMealls 7-22

versions and releases 1-6
DISKDUMP/BAS, auxiliary

utility program 5-8 ff
diskette,

data 2-10

TRSDOS software 2-10
diskette 2-5 ff, 8-5

CATE o v v v et et e 2-8

organization 2-6, 6-2

specifications 2-10
drivenumber 8-6
drive numbering L 2-5
drive specification 3-6, 3-8, 8-5
drivezero 2-5
dummy variable 8-6
DUMP, TRSDOS command 4-18
end of file

(EOF) 4-16, 6-6, 6-9,7-55, 8-6
entry point 4-18,5-6, 6-8,7-14, 8-6
EOF, BASIC function 7-55
ERROR, BASIC statement 7-6
€ITOI messages,

BASIC 7-6,7-77

TRSDOS 6-12
eXPression 8-6
FIELD, BASIC statement 7-47
field, 8-6

overlapping 7-76
fieldname 7-48,7-67, 8-6
file, TRSDOS 3-3,6-3 1f, 8-6

extension 3-6 ff, 7-32, 8-6

NAME . . vt e e e e e e e 3-6,8-7

specification 3-6 ff, 6-6, 8-7
foreground task 3-2,49,4-10, 8-7
FORMAT, TRSDOS utility 54 ff
format 54 ff, 8-7
FREE, TRSDOS command 4-19

Index

Subject Page
GET, BASIC statement 7-49
granule 4-16,4-19, 5-4, 6-3, 6-12, 8-7
hexadecimal 8-7
constants, BASIC 7-6
increment, 8-7
put ... 8-7
INPUT #, BASIC statement 7-37
INSTR, BASIC function 7-15
interrupt L ... 7-5,7-10, 8-8
KILL, BASIC command 7-28
KILL, TRSDOS command 4-19
kilobyte 8-8
LIB, TRSDOS command 4-19
library command, TRSDOS 4-11
LINE INPUT, BASIC statement 7-16
LINE INPUT #, BASIC statement 7-42
LIST, TRSDOS command 4-20
LOAD, BASIC command 7-28
LOAD, TRSDOS command 420
LOF, BASIC function 7-56
LSET, BASIC statement 7-53
machine language, 8-8
dumptodisk 4-18
load fromdisk 4-20
reserve RAMfor 7-3
access routines from
BASIC 7-14,7-20
Master Password 4-21,5-2
MERGE, BASIC command 7-29
MIDS$=, BASIC statement 7-17
MiniDisk 2-1 ff
connection 2-3
operation 2-5
specifications 2-10
MKDS$, BASIC function 7-57
MKI$, BASIC function 7-57
MKSS$, BASIC function 7-57
Notation 1-3,6-5
nullstring 8-8

Index

Subject Page
objectcode 8-8 and see machine
language
octal 8-9
constants, BASIC 7-6
OPEN, BASIC statement 7-34
openafile 6-6, 6-9, 7-33, 7-34, 8-9
parameter 8-9
password 3-6, 3-8,4-12,4-13, 89
PRINT, TRSDOS command 421
PRINT #, BASIC statement 7-43
Prompt e 8-10
PROT, TRSDOS command 4-21
protectedfile 6-12,8-10
protection level 4-12,4-22,8-10
PUT, BASIC statement 7-50
random accessiee .. 7-65
random access memory (RAM) 8-10
allocation 1-2,3-4,6-2
random access memory (RAM),
BASIC program storagein 7-32
reserving for machine language code
under DISK BASIC 7-3
read only memory (ROM) 8-10
calls from BASIC 7-22
calls from TRSDOS 6-8 ff
organization 6-2
real-time clock,
in Expansion Interface 1-2
memory locationof 4-9
todisplay 4-14
toset ... 4-23
toturnoff 7-10
toturnon 7-10
record, TRSDOS
physical 6-4,6-7, 89
logical 6-7, 8-8
release 1-6
RENAME, TRSDOS command 4-22
TESEL L i810
resident program 34, 8-10

ROM (see read only memory)

Subject Page
RSET, BASIC statement 7-53
RUN"'program”, BASIC command 7-31
SAVE, BASIC command 7-31
sector, diskette 2-6, 8-11
sequential access 7-60, 8-11
statement, BASIC 8-11
string 8-11
subrecord 7-71
SYNEAX, + vt vttt e e 8-11
TRSDOS command 3-5
system
command 4-22
file 3-7,8-11
routine 6-5 ff
TAPEDISK, auxiliary utility 5-6
task,
background 8-2
foreground3-2,4-9,4-10,4-14, 8-7
TIME, TRSDOS command 4-23
TIMES$, BASIC function 7-19
TRACE, TRSDOS command 4-10
transfer address 4-18,8-11
track, diskette 2-6, 8-11
TRSDOS
assembly I/O 6-5 ff
€ITOT MEeSSAEES . . v o v v v v e w . 6-12
file specification 3-6
library commands 4-11
memory organization 6-2
RAM allocation 3-4,8-13
system commands 4-2
utilities L L L 5-1ff
versions and releases 1-6
USING, BASIC PRINT
format modifier 7-46
USR, BASIC function 7-20
utility
TRSDOS 52
auxiliary L. 5-6
VERIFY, TRSDOS command 4-24
versionsandreleases 1-6
write protect 2-6

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
“AS IS” BASIS WITHOUT WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other
person or entity with respect to any liability, loss or damage caused or alleged to
be caused directly or indirectly by computer equipment or programs sold by

Radio Shack, including but not limited to any interruption of service, loss of
business or anticipatory profits or consequential damages resulting from the use
or operation of such computer or computer programs.

NOTE: Good data processing procedure dictates that the user test the program,
run and test sample sets of data, and run the system in parallel with the
system previously in use for a period of time adequate to insure that
results of operation of the computer or program are satisfactory.

LIMITED WARRANTY

Radio Shack warrants for a period of 90 days from the date of delivery
to customer that the computer hardware described herein shall be free
from defects in material and workmanship under normal use and service.
This warranty shall be void if this unit’s case or cabinet is opened or if
the unit is altered or modified. During this period, if a defect should
occur, the product must be returned to a Radio Shack store or dealer
for repair. Customer’s sole and exclusive remedy in the event of defect
is expressly limited to the correction of the defect by adjustment, re-
pair or replacement at Radio Shack'’s election and sole expense, except
there shall be no obligation to replace or repair items which by their
nature are expendable. No representation or other affirmation of fact,
including but not limited to statements regarding capacity, suitability
for use, or performance of the equipment, shall be or be deemed to be a
warranty or representation by Radio Shack, for any purpose, nor give
rise to any liability or obligation of Radio Shack whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT,
THERE ARE NO OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PUR-
POSE AND IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR
LOSS OF PROFITS OR BENEFITS, INDIRECT, SPECIAL, CONSE-
QUENTIAL OR OTHER SIMILAR DAMAGES ARISING OUT OF
ANY BREACH OF THIS WARRANTY OR OTHERWISE.

RADIO SHACK g A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U K
280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
RYDALMERE, N.SW. 2116 5140 NANINNE WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf

